关于高阶阿斯基-威尔逊代数

Wanxia Wang, Shilin Yang
{"title":"关于高阶阿斯基-威尔逊代数","authors":"Wanxia Wang, Shilin Yang","doi":"arxiv-2407.10404","DOIUrl":null,"url":null,"abstract":"In the paper, a new algebra ${\\mathcal A}(n)$, which is generated by an upper\ntriangular generating matrix with triple relations, is introduced. It is shown\nthat there exists an isomorphism between the algebra ${\\mathcal A}(n)$ and the\nhigher Askey-Wilson algebra ${\\mathfrak{aw}}(n)$ introduced by Cramp\\'{e},\nFrappat et al. Furthermore, we establish a series of automorphisms of\n${\\mathcal A}(n),$ which satisfy braid group relations and coincide with those\nin ${\\mathfrak{aw}}(n).$","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the higher-rank Askey-Wilson algebras\",\"authors\":\"Wanxia Wang, Shilin Yang\",\"doi\":\"arxiv-2407.10404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, a new algebra ${\\\\mathcal A}(n)$, which is generated by an upper\\ntriangular generating matrix with triple relations, is introduced. It is shown\\nthat there exists an isomorphism between the algebra ${\\\\mathcal A}(n)$ and the\\nhigher Askey-Wilson algebra ${\\\\mathfrak{aw}}(n)$ introduced by Cramp\\\\'{e},\\nFrappat et al. Furthermore, we establish a series of automorphisms of\\n${\\\\mathcal A}(n),$ which satisfy braid group relations and coincide with those\\nin ${\\\\mathfrak{aw}}(n).$\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一个新代数 ${mathcal A}(n)$,它由一个具有三重关系的上三角生成矩阵生成。本文证明了${\mathcal A}(n)$代数与Cramp\'{e}, Frappat等人引入的更高阿斯基-威尔逊代数${\mathfrak{aw}}(n)$之间存在同构关系。 此外,我们还建立了${\mathcal A}(n)$的一系列自变量,这些自变量满足辫群关系,并与${\mathfrak{aw}}(n)$中的自变量重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the higher-rank Askey-Wilson algebras
In the paper, a new algebra ${\mathcal A}(n)$, which is generated by an upper triangular generating matrix with triple relations, is introduced. It is shown that there exists an isomorphism between the algebra ${\mathcal A}(n)$ and the higher Askey-Wilson algebra ${\mathfrak{aw}}(n)$ introduced by Cramp\'{e}, Frappat et al. Furthermore, we establish a series of automorphisms of ${\mathcal A}(n),$ which satisfy braid group relations and coincide with those in ${\mathfrak{aw}}(n).$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信