{"title":"通过生成器和关系计算双股辫状链的科瓦诺夫同源性","authors":"Domenico Fiorenza, Omid Hurson","doi":"arxiv-2407.09785","DOIUrl":null,"url":null,"abstract":"In \"Homfly polynomial via an invariant of colored plane graphs\", Murakami,\nOhtsuki, and Yamada provide a state-sum description of the level $n$ Jones\npolynomial of an oriented link in terms of a suitable braided monoidal category\nwhose morphisms are $\\mathbb{Q}[q,q^{-1}]$-linear combinations of oriented\ntrivalent planar graphs, and give a corresponding description for the HOMFLY-PT\npolynomial. We extend this construction and express the Khovanov-Rozansky\nhomology of an oriented link in terms of a combinatorially defined category\nwhose morphisms are equivalence classes of formal complexes of (formal direct\nsums of shifted) oriented trivalent plane graphs. By working combinatorially,\none avoids many of the computational difficulties involved in the matrix\nfactorization computations of the original Khovanov-Rozansky formulation: one\nsystematically uses combinatorial relations satisfied by these matrix\nfactorizations to simplify the computation at a level that is easily handled.\nBy using this technique, we are able to provide a computation of the level $n$\nKhovanov-Rozansky invariant of the 2-strand braid link with $k$ crossings, for\narbitrary $n$ and $k$, confirming and extending previous results and\nconjectural predictions by Anokhina-Morozov, Beliakova-Putyra-Wehrli,\nCarqueville-Murfet, Dolotin-Morozov, Gukov-Iqbal-Kozcaz-Vafa,\nNizami-Munir-Sohail-Usman, and Rasmussen.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the Khovanov homology of 2 strand braid links via generators and relations\",\"authors\":\"Domenico Fiorenza, Omid Hurson\",\"doi\":\"arxiv-2407.09785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In \\\"Homfly polynomial via an invariant of colored plane graphs\\\", Murakami,\\nOhtsuki, and Yamada provide a state-sum description of the level $n$ Jones\\npolynomial of an oriented link in terms of a suitable braided monoidal category\\nwhose morphisms are $\\\\mathbb{Q}[q,q^{-1}]$-linear combinations of oriented\\ntrivalent planar graphs, and give a corresponding description for the HOMFLY-PT\\npolynomial. We extend this construction and express the Khovanov-Rozansky\\nhomology of an oriented link in terms of a combinatorially defined category\\nwhose morphisms are equivalence classes of formal complexes of (formal direct\\nsums of shifted) oriented trivalent plane graphs. By working combinatorially,\\none avoids many of the computational difficulties involved in the matrix\\nfactorization computations of the original Khovanov-Rozansky formulation: one\\nsystematically uses combinatorial relations satisfied by these matrix\\nfactorizations to simplify the computation at a level that is easily handled.\\nBy using this technique, we are able to provide a computation of the level $n$\\nKhovanov-Rozansky invariant of the 2-strand braid link with $k$ crossings, for\\narbitrary $n$ and $k$, confirming and extending previous results and\\nconjectural predictions by Anokhina-Morozov, Beliakova-Putyra-Wehrli,\\nCarqueville-Murfet, Dolotin-Morozov, Gukov-Iqbal-Kozcaz-Vafa,\\nNizami-Munir-Sohail-Usman, and Rasmussen.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.09785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在 "通过彩色平面图的不变量的琼斯多项式"(Homfly polynomial via an invariant of colored plane graphs)一文中,Murakami、Ohtsuki 和 Yamada 用合适的编织一元范畴(其形态是面向三价平面图的$\mathbb{Q}[q,q^{-1}]$线性组合)提供了面向链路的 $n$ 级琼斯多项式的状态和描述,并给出了相应的 HOMFLY-PTpolynomial 描述。我们扩展了这一构造,并用一个组合定义的范畴来表达有向链接的霍瓦诺夫-罗赞斯基同调,该范畴的态是有向三价平面图(移位的形式直方和)的形式复数的等价类。通过组合工作,我们避免了原始霍瓦诺夫-罗赞斯基公式的矩阵因式分解计算所涉及的许多计算困难:我们系统地使用这些矩阵因式分解所满足的组合关系,将计算简化到易于处理的水平。通过使用这种技术,我们能够在任意的 $n$ 和 $k$ 条件下,计算具有 $k$ 交叉的双股辫状链接的 $n$Khovanov-Rozansky 层不变式、证实并扩展了阿诺基纳-莫罗佐夫、贝利亚科娃-普蒂拉-韦尔利、卡克维尔-穆尔费特、多洛廷-莫罗佐夫、古科夫-伊克巴尔-科兹卡兹-瓦法、尼扎米-穆尼尔-索海尔-乌斯曼和拉斯穆森之前的结果和猜想预测。
Computing the Khovanov homology of 2 strand braid links via generators and relations
In "Homfly polynomial via an invariant of colored plane graphs", Murakami,
Ohtsuki, and Yamada provide a state-sum description of the level $n$ Jones
polynomial of an oriented link in terms of a suitable braided monoidal category
whose morphisms are $\mathbb{Q}[q,q^{-1}]$-linear combinations of oriented
trivalent planar graphs, and give a corresponding description for the HOMFLY-PT
polynomial. We extend this construction and express the Khovanov-Rozansky
homology of an oriented link in terms of a combinatorially defined category
whose morphisms are equivalence classes of formal complexes of (formal direct
sums of shifted) oriented trivalent plane graphs. By working combinatorially,
one avoids many of the computational difficulties involved in the matrix
factorization computations of the original Khovanov-Rozansky formulation: one
systematically uses combinatorial relations satisfied by these matrix
factorizations to simplify the computation at a level that is easily handled.
By using this technique, we are able to provide a computation of the level $n$
Khovanov-Rozansky invariant of the 2-strand braid link with $k$ crossings, for
arbitrary $n$ and $k$, confirming and extending previous results and
conjectural predictions by Anokhina-Morozov, Beliakova-Putyra-Wehrli,
Carqueville-Murfet, Dolotin-Morozov, Gukov-Iqbal-Kozcaz-Vafa,
Nizami-Munir-Sohail-Usman, and Rasmussen.