从凯勒结构看有限图上的扭曲边拉普拉奇

Soumalya Joardar, Atibur Rahaman
{"title":"从凯勒结构看有限图上的扭曲边拉普拉奇","authors":"Soumalya Joardar, Atibur Rahaman","doi":"arxiv-2407.11400","DOIUrl":null,"url":null,"abstract":"In this paper we study a Kahler structure on finite points. In particular, we\nstudy the edge Laplacian of a graph twisted by the Kahler structure introduced\nin this paper. We also discuss a metric aspect from a twisted holomorphic\nDolbeault-Dirac spectral triple and show that the points have a finite diameter\nwith respect to Connes' distance.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted edge Laplacians on finite graphs from a Kähler structure\",\"authors\":\"Soumalya Joardar, Atibur Rahaman\",\"doi\":\"arxiv-2407.11400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a Kahler structure on finite points. In particular, we\\nstudy the edge Laplacian of a graph twisted by the Kahler structure introduced\\nin this paper. We also discuss a metric aspect from a twisted holomorphic\\nDolbeault-Dirac spectral triple and show that the points have a finite diameter\\nwith respect to Connes' distance.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了有限点上的卡勒结构。特别是,我们研究了由本文引入的 Kahler 结构扭曲的图的边拉普拉奇。我们还讨论了来自扭曲全形多尔贝-迪拉克谱三重的度量方面,并证明这些点在康内斯距离方面具有有限直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted edge Laplacians on finite graphs from a Kähler structure
In this paper we study a Kahler structure on finite points. In particular, we study the edge Laplacian of a graph twisted by the Kahler structure introduced in this paper. We also discuss a metric aspect from a twisted holomorphic Dolbeault-Dirac spectral triple and show that the points have a finite diameter with respect to Connes' distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信