社交网络传播和链接变化的动态逻辑

IF 0.6 3区 数学 Q2 LOGIC
Edoardo Baccini, Zoé Christoff, Rineke Verbrugge
{"title":"社交网络传播和链接变化的动态逻辑","authors":"Edoardo Baccini, Zoé Christoff, Rineke Verbrugge","doi":"10.1007/s11225-024-10126-0","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a comprehensive logical framework to reason about threshold-driven diffusion and threshold-driven link change in social networks. It considers both <i>monotonic dynamics</i>, where agents can only adopt new features and create new connections, and <i>non-monotonic dynamics</i>, where agents may also abandon features or cut ties. Three types of operators are combined: one capturing diffusion only, one capturing link change only, and one capturing both <i>at the same time</i>. We first characterise the models on which diffusion of a unique feature and link change stabilise, whilst discussing salient properties of stable models with multiple spreading features. Second, we show that our operators (and any combination of them) are irreplaceable, in the sense that the sequences of model updates expressed by a combination of operators cannot <i>always</i> be expressed using any other operators. Finally, we analyse classes of models on which some operators <i>can</i> be replaced.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Logics of Diffusion and Link Changes on Social Networks\",\"authors\":\"Edoardo Baccini, Zoé Christoff, Rineke Verbrugge\",\"doi\":\"10.1007/s11225-024-10126-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a comprehensive logical framework to reason about threshold-driven diffusion and threshold-driven link change in social networks. It considers both <i>monotonic dynamics</i>, where agents can only adopt new features and create new connections, and <i>non-monotonic dynamics</i>, where agents may also abandon features or cut ties. Three types of operators are combined: one capturing diffusion only, one capturing link change only, and one capturing both <i>at the same time</i>. We first characterise the models on which diffusion of a unique feature and link change stabilise, whilst discussing salient properties of stable models with multiple spreading features. Second, we show that our operators (and any combination of them) are irreplaceable, in the sense that the sequences of model updates expressed by a combination of operators cannot <i>always</i> be expressed using any other operators. Finally, we analyse classes of models on which some operators <i>can</i> be replaced.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10126-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10126-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个全面的逻辑框架,用于推理社交网络中阈值驱动的扩散和阈值驱动的链接变化。它同时考虑了单调动态和非单调动态,前者是指行为主体只能采用新特征和创建新联系,后者是指行为主体也可能放弃特征或切断联系。我们将三种运算符结合在一起:一种运算符只捕捉扩散,一种运算符只捕捉联系变化,还有一种运算符同时捕捉这两种变化。我们首先描述了唯一特征扩散和联系变化稳定的模型特征,同时讨论了具有多个扩散特征的稳定模型的显著特性。其次,我们证明了我们的算子(以及它们的任何组合)是不可替代的,也就是说,用算子组合表达的模型更新序列不能总是用其他算子来表达。最后,我们分析了某些算子可以被替换的模型类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Logics of Diffusion and Link Changes on Social Networks

This paper introduces a comprehensive logical framework to reason about threshold-driven diffusion and threshold-driven link change in social networks. It considers both monotonic dynamics, where agents can only adopt new features and create new connections, and non-monotonic dynamics, where agents may also abandon features or cut ties. Three types of operators are combined: one capturing diffusion only, one capturing link change only, and one capturing both at the same time. We first characterise the models on which diffusion of a unique feature and link change stabilise, whilst discussing salient properties of stable models with multiple spreading features. Second, we show that our operators (and any combination of them) are irreplaceable, in the sense that the sequences of model updates expressed by a combination of operators cannot always be expressed using any other operators. Finally, we analyse classes of models on which some operators can be replaced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Logica
Studia Logica MATHEMATICS-LOGIC
CiteScore
1.70
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信