{"title":"非交换拓扑边界和可变随机中间子代数","authors":"Shuoxing Zhou","doi":"arxiv-2407.10905","DOIUrl":null,"url":null,"abstract":"As an analogue of topological boundary of discrete groups $\\Gamma$, we define\nthe noncommutative topological boundary of tracial von Neumann algebras\n$(M,\\tau)$ and apply it to generalize the main results of [AHO23], showing that\nfor a trace preserving action $\\Gamma \\curvearrowright(A,\\tau_A)$ on an\namenable tracial von Neumann algebra, a $\\Gamma$-invariant measure\n$\\mu\\in\\mathrm{Prob}(\\mathrm{SA}(\\Gamma\\ltimes A))$ supported on amenable\nintermediate subalgebras between $A$ and $\\Gamma\\ltimes A$ is necessary\nsupported on the subalgebras of $\\mathrm{Rad}(\\Gamma)\\ltimes A$. By taking\n$(A,\\tau)=L^\\infty(X,\\nu_X)$ for a free p.m.p. action $\\Gamma\n\\curvearrowright(X,\\nu_X)$, we obtain a similar results for the invariant\nrandom subequivalence relations of $\\mathcal{R}_{\\Gamma \\curvearrowright X}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative topological boundaries and amenable invariant random intermediate subalgebras\",\"authors\":\"Shuoxing Zhou\",\"doi\":\"arxiv-2407.10905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an analogue of topological boundary of discrete groups $\\\\Gamma$, we define\\nthe noncommutative topological boundary of tracial von Neumann algebras\\n$(M,\\\\tau)$ and apply it to generalize the main results of [AHO23], showing that\\nfor a trace preserving action $\\\\Gamma \\\\curvearrowright(A,\\\\tau_A)$ on an\\namenable tracial von Neumann algebra, a $\\\\Gamma$-invariant measure\\n$\\\\mu\\\\in\\\\mathrm{Prob}(\\\\mathrm{SA}(\\\\Gamma\\\\ltimes A))$ supported on amenable\\nintermediate subalgebras between $A$ and $\\\\Gamma\\\\ltimes A$ is necessary\\nsupported on the subalgebras of $\\\\mathrm{Rad}(\\\\Gamma)\\\\ltimes A$. By taking\\n$(A,\\\\tau)=L^\\\\infty(X,\\\\nu_X)$ for a free p.m.p. action $\\\\Gamma\\n\\\\curvearrowright(X,\\\\nu_X)$, we obtain a similar results for the invariant\\nrandom subequivalence relations of $\\\\mathcal{R}_{\\\\Gamma \\\\curvearrowright X}$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.10905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noncommutative topological boundaries and amenable invariant random intermediate subalgebras
As an analogue of topological boundary of discrete groups $\Gamma$, we define
the noncommutative topological boundary of tracial von Neumann algebras
$(M,\tau)$ and apply it to generalize the main results of [AHO23], showing that
for a trace preserving action $\Gamma \curvearrowright(A,\tau_A)$ on an
amenable tracial von Neumann algebra, a $\Gamma$-invariant measure
$\mu\in\mathrm{Prob}(\mathrm{SA}(\Gamma\ltimes A))$ supported on amenable
intermediate subalgebras between $A$ and $\Gamma\ltimes A$ is necessary
supported on the subalgebras of $\mathrm{Rad}(\Gamma)\ltimes A$. By taking
$(A,\tau)=L^\infty(X,\nu_X)$ for a free p.m.p. action $\Gamma
\curvearrowright(X,\nu_X)$, we obtain a similar results for the invariant
random subequivalence relations of $\mathcal{R}_{\Gamma \curvearrowright X}$.