{"title":"局部紧凑群的严格外作用:超越全因子情况","authors":"Basile Morando","doi":"arxiv-2407.11738","DOIUrl":null,"url":null,"abstract":"We show that, given a continuous action $\\alpha$ of a locally compact group\n$G$ on a factor $M$, the relative commutant $M'\\cap(M\\rtimes_{\\alpha} G)$ is\ncontained in $M\\rtimes_{\\alpha} H$ where $H$ is the subgroup of elements acting\nwithout spectral gap. As a corollary, we answer a question of Marrakchi and\nVaes by showing that if $M$ is semifinite and $\\alpha_g$ is not approximately\ninner for all $g\\neq 1$, then $M'\\cap (M\\rtimes_{\\alpha} G)=\\mathbb{C}$.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strictly outer actions of locally compact groups: beyond the full factor case\",\"authors\":\"Basile Morando\",\"doi\":\"arxiv-2407.11738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, given a continuous action $\\\\alpha$ of a locally compact group\\n$G$ on a factor $M$, the relative commutant $M'\\\\cap(M\\\\rtimes_{\\\\alpha} G)$ is\\ncontained in $M\\\\rtimes_{\\\\alpha} H$ where $H$ is the subgroup of elements acting\\nwithout spectral gap. As a corollary, we answer a question of Marrakchi and\\nVaes by showing that if $M$ is semifinite and $\\\\alpha_g$ is not approximately\\ninner for all $g\\\\neq 1$, then $M'\\\\cap (M\\\\rtimes_{\\\\alpha} G)=\\\\mathbb{C}$.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strictly outer actions of locally compact groups: beyond the full factor case
We show that, given a continuous action $\alpha$ of a locally compact group
$G$ on a factor $M$, the relative commutant $M'\cap(M\rtimes_{\alpha} G)$ is
contained in $M\rtimes_{\alpha} H$ where $H$ is the subgroup of elements acting
without spectral gap. As a corollary, we answer a question of Marrakchi and
Vaes by showing that if $M$ is semifinite and $\alpha_g$ is not approximately
inner for all $g\neq 1$, then $M'\cap (M\rtimes_{\alpha} G)=\mathbb{C}$.