用机器学习武装探索棘手的超标准模型参数空间

Rajneil Baruah, Subhadeep Mondal, Sunando Kumar Patra, Satyajit Roy
{"title":"用机器学习武装探索棘手的超标准模型参数空间","authors":"Rajneil Baruah, Subhadeep Mondal, Sunando Kumar Patra, Satyajit Roy","doi":"10.1140/epjs/s11734-024-01236-w","DOIUrl":null,"url":null,"abstract":"<p>This article attempts to summarize the effort by the particle physics community in addressing the tedious work of determining the parameter spaces of beyond-the-standard-model (BSM) scenarios, allowed by data. These spaces, typically associated with a large number of dimensions, especially in the presence of nuisance parameters, suffer from the curse of dimensionality and thus render naive sampling of any kind—even the computationally inexpensive ones—ineffective. Over the years, various new sampling (from variations of Markov Chain Monte Carlo (MCMC) to dynamic nested sampling) and machine learning (ML) algorithms have been adopted by the community to alleviate this issue. If not all, we discuss potentially the most important ones among them and the significance of their results, in detail.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing intractable beyond-standard-model parameter spaces armed with machine learning\",\"authors\":\"Rajneil Baruah, Subhadeep Mondal, Sunando Kumar Patra, Satyajit Roy\",\"doi\":\"10.1140/epjs/s11734-024-01236-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article attempts to summarize the effort by the particle physics community in addressing the tedious work of determining the parameter spaces of beyond-the-standard-model (BSM) scenarios, allowed by data. These spaces, typically associated with a large number of dimensions, especially in the presence of nuisance parameters, suffer from the curse of dimensionality and thus render naive sampling of any kind—even the computationally inexpensive ones—ineffective. Over the years, various new sampling (from variations of Markov Chain Monte Carlo (MCMC) to dynamic nested sampling) and machine learning (ML) algorithms have been adopted by the community to alleviate this issue. If not all, we discuss potentially the most important ones among them and the significance of their results, in detail.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01236-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01236-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文试图总结粒子物理学界在解决确定数据所允许的超越标准模型(BSM)情景的参数空间这一繁琐工作方面所做的努力。这些空间通常与大量维度相关,尤其是在存在滋扰参数的情况下,会受到维度诅咒的影响,从而使任何形式的天真采样--即使是计算成本低廉的采样--都变得无效。多年来,业界采用了各种新的采样(从马尔可夫链蒙特卡罗(MCMC)的变体到动态嵌套采样)和机器学习(ML)算法来缓解这一问题。如果不是全部,我们也会详细讨论其中可能最重要的算法及其结果的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing intractable beyond-standard-model parameter spaces armed with machine learning

Probing intractable beyond-standard-model parameter spaces armed with machine learning

This article attempts to summarize the effort by the particle physics community in addressing the tedious work of determining the parameter spaces of beyond-the-standard-model (BSM) scenarios, allowed by data. These spaces, typically associated with a large number of dimensions, especially in the presence of nuisance parameters, suffer from the curse of dimensionality and thus render naive sampling of any kind—even the computationally inexpensive ones—ineffective. Over the years, various new sampling (from variations of Markov Chain Monte Carlo (MCMC) to dynamic nested sampling) and machine learning (ML) algorithms have been adopted by the community to alleviate this issue. If not all, we discuss potentially the most important ones among them and the significance of their results, in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信