{"title":"多属性决策中的分配效用偏好稳健优化模型","authors":"Jian Hu, Dali Zhang, Huifu Xu, Sainan Zhang","doi":"10.1007/s10107-024-02114-y","DOIUrl":null,"url":null,"abstract":"<p>Utility preference robust optimization (PRO) has recently been proposed to deal with optimal decision-making problems where the decision maker’s (DM’s) preference over gains and losses is ambiguous. In this paper, we take a step further to investigate the case that the DM’s preference is random. We propose to use a random utility function to describe the DM’s preference and develop distributional utility preference robust optimization (DUPRO) models when the distribution of the random utility function is ambiguous. We concentrate on data-driven problems where samples of the random parameters are obtainable but the sample size may be relatively small. In the case when the random utility functions are of piecewise linear structure, we propose a bootstrap method to construct the ambiguity set and demonstrate how the resulting DUPRO can be solved by a mixed-integer linear program. The piecewise linear structure is versatile in its ability to incorporate classical non-parametric utility assessment methods into the sample generation of a random utility function. Next, we expand the proposed DUPRO models and computational schemes to address general cases where the random utility functions are not necessarily piecewise linear. We show how the DUPRO models with piecewise linear random utility functions can serve as approximations for the DUPRO models with general random utility functions and allow us to quantify the approximation errors. Finally, we carry out some performance studies of the proposed bootstrap-based DUPRO model and report the preliminary numerical test results. This paper is the first attempt to use distributionally robust optimization methods for PRO problems.\n</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"31 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributional utility preference robust optimization models in multi-attribute decision making\",\"authors\":\"Jian Hu, Dali Zhang, Huifu Xu, Sainan Zhang\",\"doi\":\"10.1007/s10107-024-02114-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utility preference robust optimization (PRO) has recently been proposed to deal with optimal decision-making problems where the decision maker’s (DM’s) preference over gains and losses is ambiguous. In this paper, we take a step further to investigate the case that the DM’s preference is random. We propose to use a random utility function to describe the DM’s preference and develop distributional utility preference robust optimization (DUPRO) models when the distribution of the random utility function is ambiguous. We concentrate on data-driven problems where samples of the random parameters are obtainable but the sample size may be relatively small. In the case when the random utility functions are of piecewise linear structure, we propose a bootstrap method to construct the ambiguity set and demonstrate how the resulting DUPRO can be solved by a mixed-integer linear program. The piecewise linear structure is versatile in its ability to incorporate classical non-parametric utility assessment methods into the sample generation of a random utility function. Next, we expand the proposed DUPRO models and computational schemes to address general cases where the random utility functions are not necessarily piecewise linear. We show how the DUPRO models with piecewise linear random utility functions can serve as approximations for the DUPRO models with general random utility functions and allow us to quantify the approximation errors. Finally, we carry out some performance studies of the proposed bootstrap-based DUPRO model and report the preliminary numerical test results. This paper is the first attempt to use distributionally robust optimization methods for PRO problems.\\n</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02114-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02114-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Distributional utility preference robust optimization models in multi-attribute decision making
Utility preference robust optimization (PRO) has recently been proposed to deal with optimal decision-making problems where the decision maker’s (DM’s) preference over gains and losses is ambiguous. In this paper, we take a step further to investigate the case that the DM’s preference is random. We propose to use a random utility function to describe the DM’s preference and develop distributional utility preference robust optimization (DUPRO) models when the distribution of the random utility function is ambiguous. We concentrate on data-driven problems where samples of the random parameters are obtainable but the sample size may be relatively small. In the case when the random utility functions are of piecewise linear structure, we propose a bootstrap method to construct the ambiguity set and demonstrate how the resulting DUPRO can be solved by a mixed-integer linear program. The piecewise linear structure is versatile in its ability to incorporate classical non-parametric utility assessment methods into the sample generation of a random utility function. Next, we expand the proposed DUPRO models and computational schemes to address general cases where the random utility functions are not necessarily piecewise linear. We show how the DUPRO models with piecewise linear random utility functions can serve as approximations for the DUPRO models with general random utility functions and allow us to quantify the approximation errors. Finally, we carry out some performance studies of the proposed bootstrap-based DUPRO model and report the preliminary numerical test results. This paper is the first attempt to use distributionally robust optimization methods for PRO problems.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.