热收缩和凝固收缩对连铸坯微观结构和宏观偏析影响的数值研究

Tinghe Qiao, Shuang Wang, Rui Guan, Xiaolei Zhu, Xingang Ai, Ji Yang, Shengli Li
{"title":"热收缩和凝固收缩对连铸坯微观结构和宏观偏析影响的数值研究","authors":"Tinghe Qiao, Shuang Wang, Rui Guan, Xiaolei Zhu, Xingang Ai, Ji Yang, Shengli Li","doi":"10.1007/s11663-024-03215-x","DOIUrl":null,"url":null,"abstract":"<p>As a typical metallurgical defect, macrosegregation seriously affects the internal quality of the continuous casting billet, and it cannot be solved by processes such as high-temperature diffusion and rolling. For continuous casting billet, the solidification shrinkage and thermal shrinkage of the microstructure directly affect the macrosegregation defect. In order to reveal the effects of solidification shrinkage and thermal shrinkage on the melt flow, microstructure distribution, and solute segregation, a multiphase solidification model based on the Eulerian–Eulerian approach was established in this work. The growth behaviors of the columnar dendrite trunk and the columnar dendrite tip were fully considered, as well as the nucleation, growth, free migration of equiaxed grains, and the columnar-to-equiaxed transition (CET). Besides, the corresponding relationship between the secondary dendrite arm spacing (SDAS) and the cooling rate has also been taken into account in the model, which makes the net mass transport source term of the mass conservation equations more accurate. The calculation results show that when no any shrinkage behavior is considered in the model, the melt flow velocity in front of the solidification end will gradually decrease until it is the same as the casting speed, and the segregation index at the billet center will gradually increase until it reaches the maximum value at the solidification end. Both thermal shrinkage and solidification shrinkage can generate a negative pressure zone in the billet center, sucking the poor-solute melt located the upstream of continuous casting strand flows towards the solidification end, and mixing with the enriched-solute melt before the solidification end, thereby inhibiting macrosegregation. However, compared with the solidification shrinkage, the effect of thermal shrinkage on reducing the positive segregation index in the billet center is limited.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Investigation into the Effect of Thermal Shrinkage and Solidification Shrinkage on the Microstructure and Macrosegregation for Continuous Casting Billet\",\"authors\":\"Tinghe Qiao, Shuang Wang, Rui Guan, Xiaolei Zhu, Xingang Ai, Ji Yang, Shengli Li\",\"doi\":\"10.1007/s11663-024-03215-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a typical metallurgical defect, macrosegregation seriously affects the internal quality of the continuous casting billet, and it cannot be solved by processes such as high-temperature diffusion and rolling. For continuous casting billet, the solidification shrinkage and thermal shrinkage of the microstructure directly affect the macrosegregation defect. In order to reveal the effects of solidification shrinkage and thermal shrinkage on the melt flow, microstructure distribution, and solute segregation, a multiphase solidification model based on the Eulerian–Eulerian approach was established in this work. The growth behaviors of the columnar dendrite trunk and the columnar dendrite tip were fully considered, as well as the nucleation, growth, free migration of equiaxed grains, and the columnar-to-equiaxed transition (CET). Besides, the corresponding relationship between the secondary dendrite arm spacing (SDAS) and the cooling rate has also been taken into account in the model, which makes the net mass transport source term of the mass conservation equations more accurate. The calculation results show that when no any shrinkage behavior is considered in the model, the melt flow velocity in front of the solidification end will gradually decrease until it is the same as the casting speed, and the segregation index at the billet center will gradually increase until it reaches the maximum value at the solidification end. Both thermal shrinkage and solidification shrinkage can generate a negative pressure zone in the billet center, sucking the poor-solute melt located the upstream of continuous casting strand flows towards the solidification end, and mixing with the enriched-solute melt before the solidification end, thereby inhibiting macrosegregation. However, compared with the solidification shrinkage, the effect of thermal shrinkage on reducing the positive segregation index in the billet center is limited.</p>\",\"PeriodicalId\":18613,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-024-03215-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03215-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宏观偏析作为一种典型的冶金缺陷,严重影响连铸坯的内部质量,而且无法通过高温扩散和轧制等工艺来解决。对于连铸坯,微观组织的凝固收缩和热收缩直接影响宏观偏析缺陷。为了揭示凝固收缩和热收缩对熔体流动、微观结构分布和溶质偏析的影响,本文建立了基于欧拉-欧拉方法的多相凝固模型。该模型充分考虑了柱状枝晶主干和柱状枝晶尖端的生长行为,以及等轴晶粒的成核、生长、自由迁移和柱状到等轴的转变(CET)。此外,模型中还考虑了二次枝晶臂间距(SDAS)与冷却速率之间的相应关系,从而使质量守恒方程中的净质量传输源项更加精确。计算结果表明,当模型中不考虑任何收缩行为时,凝固端前方的熔体流动速度将逐渐减小,直至与浇铸速度相同,坯料中心的偏析指数将逐渐增大,直至在凝固端达到最大值。热收缩和凝固收缩都能在坯料中心产生负压区,将位于连铸坯上游的贫溶质熔体吸向凝固端,并在凝固端之前与富溶质熔体混合,从而抑制宏观偏析。然而,与凝固收缩相比,热收缩对降低坯料中心正偏析指数的作用有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Numerical Investigation into the Effect of Thermal Shrinkage and Solidification Shrinkage on the Microstructure and Macrosegregation for Continuous Casting Billet

A Numerical Investigation into the Effect of Thermal Shrinkage and Solidification Shrinkage on the Microstructure and Macrosegregation for Continuous Casting Billet

As a typical metallurgical defect, macrosegregation seriously affects the internal quality of the continuous casting billet, and it cannot be solved by processes such as high-temperature diffusion and rolling. For continuous casting billet, the solidification shrinkage and thermal shrinkage of the microstructure directly affect the macrosegregation defect. In order to reveal the effects of solidification shrinkage and thermal shrinkage on the melt flow, microstructure distribution, and solute segregation, a multiphase solidification model based on the Eulerian–Eulerian approach was established in this work. The growth behaviors of the columnar dendrite trunk and the columnar dendrite tip were fully considered, as well as the nucleation, growth, free migration of equiaxed grains, and the columnar-to-equiaxed transition (CET). Besides, the corresponding relationship between the secondary dendrite arm spacing (SDAS) and the cooling rate has also been taken into account in the model, which makes the net mass transport source term of the mass conservation equations more accurate. The calculation results show that when no any shrinkage behavior is considered in the model, the melt flow velocity in front of the solidification end will gradually decrease until it is the same as the casting speed, and the segregation index at the billet center will gradually increase until it reaches the maximum value at the solidification end. Both thermal shrinkage and solidification shrinkage can generate a negative pressure zone in the billet center, sucking the poor-solute melt located the upstream of continuous casting strand flows towards the solidification end, and mixing with the enriched-solute melt before the solidification end, thereby inhibiting macrosegregation. However, compared with the solidification shrinkage, the effect of thermal shrinkage on reducing the positive segregation index in the billet center is limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信