向量值福克型空间上的托普利兹和汉克尔算子

Pub Date : 2024-07-17 DOI:10.1007/s11785-024-01575-5
Chunxu Xu, Jianxiang Dong, Tao Yu
{"title":"向量值福克型空间上的托普利兹和汉克尔算子","authors":"Chunxu Xu, Jianxiang Dong, Tao Yu","doi":"10.1007/s11785-024-01575-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection <span>\\(P:L^p_{\\Psi }({\\mathcal {H}})\\rightarrow F^p_{\\Psi }({\\mathcal {H}})\\)</span> is bounded for all <span>\\(1\\le p\\le \\infty \\)</span>, and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on <span>\\(F^p_{\\Psi }({\\mathcal {H}})(1&lt;p&lt;\\infty )\\)</span>. Finally, we describe the boundedness (or compactness) of the Hankel operators <span>\\(H_G\\)</span> and <span>\\(H_{G^*}\\)</span> on <span>\\(F_{\\Psi }^2({\\mathcal {H}})\\)</span> in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces <span>\\(BMO_\\Psi ^2\\)</span> and <span>\\(VMO_\\Psi ^2\\)</span> defined in terms of the Berezin transform.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces\",\"authors\":\"Chunxu Xu, Jianxiang Dong, Tao Yu\",\"doi\":\"10.1007/s11785-024-01575-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection <span>\\\\(P:L^p_{\\\\Psi }({\\\\mathcal {H}})\\\\rightarrow F^p_{\\\\Psi }({\\\\mathcal {H}})\\\\)</span> is bounded for all <span>\\\\(1\\\\le p\\\\le \\\\infty \\\\)</span>, and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on <span>\\\\(F^p_{\\\\Psi }({\\\\mathcal {H}})(1&lt;p&lt;\\\\infty )\\\\)</span>. Finally, we describe the boundedness (or compactness) of the Hankel operators <span>\\\\(H_G\\\\)</span> and <span>\\\\(H_{G^*}\\\\)</span> on <span>\\\\(F_{\\\\Psi }^2({\\\\mathcal {H}})\\\\)</span> in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces <span>\\\\(BMO_\\\\Psi ^2\\\\)</span> and <span>\\\\(VMO_\\\\Psi ^2\\\\)</span> defined in terms of the Berezin transform.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01575-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01575-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了向量值 Fock 型空间上以正算子值函数为符号的 Toeplitz 和 Hankel 算子的一些特征。我们首先讨论了伯格曼投影(P:L^p_{\Psi }({\mathcal {H}})\rightarrow F^p_{\Psi }({\mathcal {H}}))对于所有\(1\le p\le \infty \)都是有界的,并得到了向量值 Fock 型空间的对偶性。其次,利用算子值卡列松条件,我们给出了 \(F^p_{\Psi }({\mathcal {H}})(1<p<\infty )\) 上托普利兹算子的有界性和紧凑性的完整描述。最后,我们用有界(或消失)的平均振荡来描述汉克尔算子 \(H_G\) 和 \(H_{G^*}\) 在 \(F_{\Psi }^2({\mathcal {H}})上的有界性(或紧凑性)。我们还给出了根据贝雷津变换定义的算子值空间 \(BMO_\Psi ^2\)和 \(VMO_\Psi ^2\)的几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces

In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection \(P:L^p_{\Psi }({\mathcal {H}})\rightarrow F^p_{\Psi }({\mathcal {H}})\) is bounded for all \(1\le p\le \infty \), and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on \(F^p_{\Psi }({\mathcal {H}})(1<p<\infty )\). Finally, we describe the boundedness (or compactness) of the Hankel operators \(H_G\) and \(H_{G^*}\) on \(F_{\Psi }^2({\mathcal {H}})\) in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces \(BMO_\Psi ^2\) and \(VMO_\Psi ^2\) defined in terms of the Berezin transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信