向量值福克型空间上的托普利兹和汉克尔算子

IF 0.7 4区 数学 Q2 MATHEMATICS
Chunxu Xu, Jianxiang Dong, Tao Yu
{"title":"向量值福克型空间上的托普利兹和汉克尔算子","authors":"Chunxu Xu, Jianxiang Dong, Tao Yu","doi":"10.1007/s11785-024-01575-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection <span>\\(P:L^p_{\\Psi }({\\mathcal {H}})\\rightarrow F^p_{\\Psi }({\\mathcal {H}})\\)</span> is bounded for all <span>\\(1\\le p\\le \\infty \\)</span>, and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on <span>\\(F^p_{\\Psi }({\\mathcal {H}})(1&lt;p&lt;\\infty )\\)</span>. Finally, we describe the boundedness (or compactness) of the Hankel operators <span>\\(H_G\\)</span> and <span>\\(H_{G^*}\\)</span> on <span>\\(F_{\\Psi }^2({\\mathcal {H}})\\)</span> in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces <span>\\(BMO_\\Psi ^2\\)</span> and <span>\\(VMO_\\Psi ^2\\)</span> defined in terms of the Berezin transform.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"36 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces\",\"authors\":\"Chunxu Xu, Jianxiang Dong, Tao Yu\",\"doi\":\"10.1007/s11785-024-01575-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection <span>\\\\(P:L^p_{\\\\Psi }({\\\\mathcal {H}})\\\\rightarrow F^p_{\\\\Psi }({\\\\mathcal {H}})\\\\)</span> is bounded for all <span>\\\\(1\\\\le p\\\\le \\\\infty \\\\)</span>, and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on <span>\\\\(F^p_{\\\\Psi }({\\\\mathcal {H}})(1&lt;p&lt;\\\\infty )\\\\)</span>. Finally, we describe the boundedness (or compactness) of the Hankel operators <span>\\\\(H_G\\\\)</span> and <span>\\\\(H_{G^*}\\\\)</span> on <span>\\\\(F_{\\\\Psi }^2({\\\\mathcal {H}})\\\\)</span> in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces <span>\\\\(BMO_\\\\Psi ^2\\\\)</span> and <span>\\\\(VMO_\\\\Psi ^2\\\\)</span> defined in terms of the Berezin transform.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01575-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01575-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了向量值 Fock 型空间上以正算子值函数为符号的 Toeplitz 和 Hankel 算子的一些特征。我们首先讨论了伯格曼投影(P:L^p_{\Psi }({\mathcal {H}})\rightarrow F^p_{\Psi }({\mathcal {H}}))对于所有\(1\le p\le \infty \)都是有界的,并得到了向量值 Fock 型空间的对偶性。其次,利用算子值卡列松条件,我们给出了 \(F^p_{\Psi }({\mathcal {H}})(1<p<\infty )\) 上托普利兹算子的有界性和紧凑性的完整描述。最后,我们用有界(或消失)的平均振荡来描述汉克尔算子 \(H_G\) 和 \(H_{G^*}\) 在 \(F_{\Psi }^2({\mathcal {H}})上的有界性(或紧凑性)。我们还给出了根据贝雷津变换定义的算子值空间 \(BMO_\Psi ^2\)和 \(VMO_\Psi ^2\)的几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces

In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection \(P:L^p_{\Psi }({\mathcal {H}})\rightarrow F^p_{\Psi }({\mathcal {H}})\) is bounded for all \(1\le p\le \infty \), and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on \(F^p_{\Psi }({\mathcal {H}})(1<p<\infty )\). Finally, we describe the boundedness (or compactness) of the Hankel operators \(H_G\) and \(H_{G^*}\) on \(F_{\Psi }^2({\mathcal {H}})\) in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces \(BMO_\Psi ^2\) and \(VMO_\Psi ^2\) defined in terms of the Berezin transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信