{"title":"独立非同分布变量移动和的渐近特性","authors":"Narayanaswamy Balakrishnan, Alexei Stepanov","doi":"10.3103/s1066530724700091","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this work, we discuss the asymptotic behavior of minima and maxima of moving sums of independent and non-identically distributed random variables. We first establish some theoretical results associated with the asymptotic behavior of minima and maxima. Then, we apply these results to exponential and normal models. We also derive strong limit results for the minima and maxima of moving sums taken from these two models.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables\",\"authors\":\"Narayanaswamy Balakrishnan, Alexei Stepanov\",\"doi\":\"10.3103/s1066530724700091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this work, we discuss the asymptotic behavior of minima and maxima of moving sums of independent and non-identically distributed random variables. We first establish some theoretical results associated with the asymptotic behavior of minima and maxima. Then, we apply these results to exponential and normal models. We also derive strong limit results for the minima and maxima of moving sums taken from these two models.</p>\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530724700091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables
Abstract
In this work, we discuss the asymptotic behavior of minima and maxima of moving sums of independent and non-identically distributed random variables. We first establish some theoretical results associated with the asymptotic behavior of minima and maxima. Then, we apply these results to exponential and normal models. We also derive strong limit results for the minima and maxima of moving sums taken from these two models.
期刊介绍:
Mathematical Methods of Statistics is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.