{"title":"截断历史数据对奶羊选育候选者预测能力的影响","authors":"I. Granado-Tajada, E. Ugarte","doi":"10.1016/j.animal.2024.101245","DOIUrl":null,"url":null,"abstract":"<div><p>Along the last decades, the genetic evaluation methodology has evolved, improving breeding value estimates. Many breeding programmes have historical phenotypic records and large number of generations, but to make use of them could result in more inconveniences than benefits. In this study, the prediction ability of genotyped young animals was assessed by simultaneously evaluating the removal of historical data, two pedigree deepness and two methodologies (traditional BLUP and single−step genomic BLUP or <strong>ssGBLUP</strong>), using milk yield records of 40 years of three Latxa dairy sheep populations. The linear regression method was used to compare predictions of young rams before and after progeny testing, with six cut-off points, by intervals of 4 years (from 1992 to 2012), and statistics of ratio of accuracies, bias, and dispersion were calculated. The prediction accuracy of selection candidates, when genomic information was included, was the highest in all Latxa populations (between 0.54 and 0.69 with full data set). Nevertheless, the deletion of historical phenotypic data resulted on moderate accuracy gain in the bigger data size populations (mean gain 2.5%), and the smaller population took advantage of a moderate data deletion (2.7% gain by removing data until 2004), reducing accuracy when more records were removed. The bias of validation individuals was lower when the breeding value was predicted based on genomic information (between 2.1 and 13.9), being lower when the biggest amount of data was deleted in the bigger data size populations (5.2% reduction), and the smaller population was benefited from data deletion between 1996 and 2008 (3.8% bias reduction). Meanwhile, the slope of estimated genetic trend was lower when less data were included, and an overestimation of the unknown parent group estimates was observed. The results indicated that ssGBLUP evaluations were outstanding, compared with traditional BLUP evaluations, while the depth of pedigree had a very small influence, and deletion of historical phenotypic data was beneficial. Thus, Latxa routine genetic evaluations would benefit from truncating phenotypic records between 2000 and 2004, the use of two pedigree generations and the implementation of ssGBLUP methodology.</p></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"18 8","pages":"Article 101245"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751731124001769/pdfft?md5=bfeeea34d87e9906b6af2c0ae0b2f27d&pid=1-s2.0-S1751731124001769-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of truncating historical data on prediction ability of dairy sheep selection candidates\",\"authors\":\"I. Granado-Tajada, E. Ugarte\",\"doi\":\"10.1016/j.animal.2024.101245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Along the last decades, the genetic evaluation methodology has evolved, improving breeding value estimates. Many breeding programmes have historical phenotypic records and large number of generations, but to make use of them could result in more inconveniences than benefits. In this study, the prediction ability of genotyped young animals was assessed by simultaneously evaluating the removal of historical data, two pedigree deepness and two methodologies (traditional BLUP and single−step genomic BLUP or <strong>ssGBLUP</strong>), using milk yield records of 40 years of three Latxa dairy sheep populations. The linear regression method was used to compare predictions of young rams before and after progeny testing, with six cut-off points, by intervals of 4 years (from 1992 to 2012), and statistics of ratio of accuracies, bias, and dispersion were calculated. The prediction accuracy of selection candidates, when genomic information was included, was the highest in all Latxa populations (between 0.54 and 0.69 with full data set). Nevertheless, the deletion of historical phenotypic data resulted on moderate accuracy gain in the bigger data size populations (mean gain 2.5%), and the smaller population took advantage of a moderate data deletion (2.7% gain by removing data until 2004), reducing accuracy when more records were removed. The bias of validation individuals was lower when the breeding value was predicted based on genomic information (between 2.1 and 13.9), being lower when the biggest amount of data was deleted in the bigger data size populations (5.2% reduction), and the smaller population was benefited from data deletion between 1996 and 2008 (3.8% bias reduction). Meanwhile, the slope of estimated genetic trend was lower when less data were included, and an overestimation of the unknown parent group estimates was observed. The results indicated that ssGBLUP evaluations were outstanding, compared with traditional BLUP evaluations, while the depth of pedigree had a very small influence, and deletion of historical phenotypic data was beneficial. Thus, Latxa routine genetic evaluations would benefit from truncating phenotypic records between 2000 and 2004, the use of two pedigree generations and the implementation of ssGBLUP methodology.</p></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":\"18 8\",\"pages\":\"Article 101245\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751731124001769/pdfft?md5=bfeeea34d87e9906b6af2c0ae0b2f27d&pid=1-s2.0-S1751731124001769-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751731124001769\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124001769","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Impact of truncating historical data on prediction ability of dairy sheep selection candidates
Along the last decades, the genetic evaluation methodology has evolved, improving breeding value estimates. Many breeding programmes have historical phenotypic records and large number of generations, but to make use of them could result in more inconveniences than benefits. In this study, the prediction ability of genotyped young animals was assessed by simultaneously evaluating the removal of historical data, two pedigree deepness and two methodologies (traditional BLUP and single−step genomic BLUP or ssGBLUP), using milk yield records of 40 years of three Latxa dairy sheep populations. The linear regression method was used to compare predictions of young rams before and after progeny testing, with six cut-off points, by intervals of 4 years (from 1992 to 2012), and statistics of ratio of accuracies, bias, and dispersion were calculated. The prediction accuracy of selection candidates, when genomic information was included, was the highest in all Latxa populations (between 0.54 and 0.69 with full data set). Nevertheless, the deletion of historical phenotypic data resulted on moderate accuracy gain in the bigger data size populations (mean gain 2.5%), and the smaller population took advantage of a moderate data deletion (2.7% gain by removing data until 2004), reducing accuracy when more records were removed. The bias of validation individuals was lower when the breeding value was predicted based on genomic information (between 2.1 and 13.9), being lower when the biggest amount of data was deleted in the bigger data size populations (5.2% reduction), and the smaller population was benefited from data deletion between 1996 and 2008 (3.8% bias reduction). Meanwhile, the slope of estimated genetic trend was lower when less data were included, and an overestimation of the unknown parent group estimates was observed. The results indicated that ssGBLUP evaluations were outstanding, compared with traditional BLUP evaluations, while the depth of pedigree had a very small influence, and deletion of historical phenotypic data was beneficial. Thus, Latxa routine genetic evaluations would benefit from truncating phenotypic records between 2000 and 2004, the use of two pedigree generations and the implementation of ssGBLUP methodology.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.