辐射热通量影响下自重力旋转理想气体中磁气动力冲击波的相似解

V. K. Vats, D. B. Singh, Mrigendra Manjul
{"title":"辐射热通量影响下自重力旋转理想气体中磁气动力冲击波的相似解","authors":"V. K. Vats, D. B. Singh, Mrigendra Manjul","doi":"10.1063/5.0214647","DOIUrl":null,"url":null,"abstract":"The Lie invariance method is used to analyze the one-dimensional, unsteady flow of a cylindrical shock wave in a rotating, self-gravitating, radiating ideal gas under the influence of an axial or azimuthal magnetic field, with an emphasis on adiabatic conditions. The analysis assumes a stationary environment just ahead of the shock wave and considers variations in fluid velocity, magnetic field, and density within the perturbed medium just behind the shock front. In the governing equations, the impact of thermal radiation under an optically thin limit is integrated into the energy equation. Utilizing the Lie invariance method, the set of partial differential equations governing the flow in this medium is transformed into a system of nonlinear ordinary differential equations (ODEs) using similarity variables. Two distinct cases of similarity solutions are obtained by selecting different values for the arbitrary constants associated with the generators. Among these cases, one yields similarity solutions assuming a power-law shock path and the other an exponential-law shock path. For both cases, the resulting set of nonlinear ODEs are numerically solved using the 4th-order Runge–Kutta method in MATLAB software. The article thoroughly explores the influence of various parameters, including γ (adiabatic index of the gas), Ma−2 (Alfvén–Mach number), σ (ambient density exponent), l1 (rotational parameter), and G0 (gravitational parameter) on the flow properties. The findings are visually presented to offer a comprehensive insight into the effects of these parameters.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity solution for the magnetogasdynamic shock wave in a self-gravitating and rotating ideal gas under the influence of radiation heat flux\",\"authors\":\"V. K. Vats, D. B. Singh, Mrigendra Manjul\",\"doi\":\"10.1063/5.0214647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lie invariance method is used to analyze the one-dimensional, unsteady flow of a cylindrical shock wave in a rotating, self-gravitating, radiating ideal gas under the influence of an axial or azimuthal magnetic field, with an emphasis on adiabatic conditions. The analysis assumes a stationary environment just ahead of the shock wave and considers variations in fluid velocity, magnetic field, and density within the perturbed medium just behind the shock front. In the governing equations, the impact of thermal radiation under an optically thin limit is integrated into the energy equation. Utilizing the Lie invariance method, the set of partial differential equations governing the flow in this medium is transformed into a system of nonlinear ordinary differential equations (ODEs) using similarity variables. Two distinct cases of similarity solutions are obtained by selecting different values for the arbitrary constants associated with the generators. Among these cases, one yields similarity solutions assuming a power-law shock path and the other an exponential-law shock path. For both cases, the resulting set of nonlinear ODEs are numerically solved using the 4th-order Runge–Kutta method in MATLAB software. The article thoroughly explores the influence of various parameters, including γ (adiabatic index of the gas), Ma−2 (Alfvén–Mach number), σ (ambient density exponent), l1 (rotational parameter), and G0 (gravitational parameter) on the flow properties. The findings are visually presented to offer a comprehensive insight into the effects of these parameters.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0214647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0214647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用李氏不变性方法分析了旋转、自引力、辐射理想气体中圆柱冲击波在轴向或方位磁场影响下的一维非稳态流动,重点是绝热条件。分析假设冲击波前方为静止环境,并考虑冲击波前方扰动介质中流体速度、磁场和密度的变化。在控制方程中,热辐射在光学稀薄极限下的影响被整合到能量方程中。利用李氏不变性方法,利用相似变量将控制介质流动的偏微分方程组转换为非线性常微分方程(ODE)系统。通过为与生成器相关的任意常数选择不同的值,可以得到两种不同情况的相似解。其中,一种是假设幂律冲击路径的相似性解,另一种是假设指数律冲击路径的相似性解。对于这两种情况,所得到的一组非线性 ODEs 都使用 MATLAB 软件中的四阶 Runge-Kutta 方法进行了数值求解。文章深入探讨了各种参数对流动特性的影响,包括 γ(气体绝热指数)、Ma-2(阿尔弗文-马赫数)、σ(环境密度指数)、l1(旋转参数)和 G0(重力参数)。研究结果直观展示了这些参数的全面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity solution for the magnetogasdynamic shock wave in a self-gravitating and rotating ideal gas under the influence of radiation heat flux
The Lie invariance method is used to analyze the one-dimensional, unsteady flow of a cylindrical shock wave in a rotating, self-gravitating, radiating ideal gas under the influence of an axial or azimuthal magnetic field, with an emphasis on adiabatic conditions. The analysis assumes a stationary environment just ahead of the shock wave and considers variations in fluid velocity, magnetic field, and density within the perturbed medium just behind the shock front. In the governing equations, the impact of thermal radiation under an optically thin limit is integrated into the energy equation. Utilizing the Lie invariance method, the set of partial differential equations governing the flow in this medium is transformed into a system of nonlinear ordinary differential equations (ODEs) using similarity variables. Two distinct cases of similarity solutions are obtained by selecting different values for the arbitrary constants associated with the generators. Among these cases, one yields similarity solutions assuming a power-law shock path and the other an exponential-law shock path. For both cases, the resulting set of nonlinear ODEs are numerically solved using the 4th-order Runge–Kutta method in MATLAB software. The article thoroughly explores the influence of various parameters, including γ (adiabatic index of the gas), Ma−2 (Alfvén–Mach number), σ (ambient density exponent), l1 (rotational parameter), and G0 (gravitational parameter) on the flow properties. The findings are visually presented to offer a comprehensive insight into the effects of these parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信