{"title":"针对具有非对称输入饱和度和外部干扰的仿射非线性系统的基于事件触发的 H∞ 积分强化学习控制算法","authors":"Luy Nguyen Tan , Dien Nguyen Duc","doi":"10.1016/j.fraope.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses an integral reinforcement learning (IRL)-based novel event-triggered (ET) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control algorithm for affine continuous-time nonlinear systems with completely unknown drift dynamics, asymmetric input saturation, and external disturbances. The algorithm uses a zero-sum game theory to reject external disturbances and an ET mechanism to reduce communication costs and computation bandwidth. Compared to the existing ET control schemes, the algorithm in the first time deals with ET <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control relaxing identification of the unknown part of dynamics for systems with asymmetric input saturation. ET control laws and the worst-case disturbance strategies are approximated synchronously by a designed triggering threshold. The stability is guaranteed by Lyapunov analysis and the Zeno behavior is avoided since the inter-event time is greater than zero. Comparative results in simulations confirm that the proposed algorithm is effective.</p></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"8 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773186324000628/pdfft?md5=bfbe121f3e769518516f6db990b5fe6e&pid=1-s2.0-S2773186324000628-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integral reinforcement learning-based event-triggered H∞ control algorithm for affine nonlinear systems with asymmetric input saturation and external disturbances\",\"authors\":\"Luy Nguyen Tan , Dien Nguyen Duc\",\"doi\":\"10.1016/j.fraope.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses an integral reinforcement learning (IRL)-based novel event-triggered (ET) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control algorithm for affine continuous-time nonlinear systems with completely unknown drift dynamics, asymmetric input saturation, and external disturbances. The algorithm uses a zero-sum game theory to reject external disturbances and an ET mechanism to reduce communication costs and computation bandwidth. Compared to the existing ET control schemes, the algorithm in the first time deals with ET <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control relaxing identification of the unknown part of dynamics for systems with asymmetric input saturation. ET control laws and the worst-case disturbance strategies are approximated synchronously by a designed triggering threshold. The stability is guaranteed by Lyapunov analysis and the Zeno behavior is avoided since the inter-event time is greater than zero. Comparative results in simulations confirm that the proposed algorithm is effective.</p></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"8 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773186324000628/pdfft?md5=bfbe121f3e769518516f6db990b5fe6e&pid=1-s2.0-S2773186324000628-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186324000628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186324000628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文针对具有完全未知漂移动态、非对称输入饱和和外部干扰的仿射连续时间非线性系统,提出了一种基于积分强化学习(IRL)的新型事件触发(ET)H∞控制算法。该算法利用零和博弈论来拒绝外部干扰,并利用 ET 机制来降低通信成本和计算带宽。与现有的 ET 控制方案相比,该算法首次针对非对称输入饱和的系统处理了 ET H∞ 控制,放松了对动态未知部分的识别。ET 控制法和最坏情况下的干扰策略通过设计的触发阈值同步近似。由于事件间时间大于零,因此通过 Lyapunov 分析保证了稳定性,并避免了 Zeno 行为。模拟比较结果证实了所提出的算法是有效的。
Integral reinforcement learning-based event-triggered H∞ control algorithm for affine nonlinear systems with asymmetric input saturation and external disturbances
This paper addresses an integral reinforcement learning (IRL)-based novel event-triggered (ET) control algorithm for affine continuous-time nonlinear systems with completely unknown drift dynamics, asymmetric input saturation, and external disturbances. The algorithm uses a zero-sum game theory to reject external disturbances and an ET mechanism to reduce communication costs and computation bandwidth. Compared to the existing ET control schemes, the algorithm in the first time deals with ET control relaxing identification of the unknown part of dynamics for systems with asymmetric input saturation. ET control laws and the worst-case disturbance strategies are approximated synchronously by a designed triggering threshold. The stability is guaranteed by Lyapunov analysis and the Zeno behavior is avoided since the inter-event time is greater than zero. Comparative results in simulations confirm that the proposed algorithm is effective.