M.E. Bravo , S. Principi , L.A. Levin , J.P. Ormazabal , C. Ferronato , F. Palma , J. Isola , A.A. Tassone
{"title":"阿根廷深海冷渗漏的发现承载着奇特的营养联系和生物多样性","authors":"M.E. Bravo , S. Principi , L.A. Levin , J.P. Ormazabal , C. Ferronato , F. Palma , J. Isola , A.A. Tassone","doi":"10.1016/j.dsr.2024.104361","DOIUrl":null,"url":null,"abstract":"<div><p>Chemosynthetic ecosystems host unique geological, biogeochemical, microbial and faunistic settings, which provide key ecosystem services for human wellbeing. In the Argentine continental margin, the existence of chemosynthetic ecosystems is still unknown. We present the first finding of chemosynthetic ecosystems in the Argentine deep sea. We assessed and compared biological and geological settings for cold seeps at Malvinas Basin and Colorado Basin and a control site (no gas) at Colorado Basin. We found two cold seeps with crater-like geomorphic features (pockmarks) of 500-m and 1000-m diameter at depths of ⁓500 m. Both cold seeps exhibited methane gas bubbles trapped at the surface of the seafloor, one exhibited seepage into the water column. Cold seeps hosted dense benthic macroinvertebrates (≥300 μm) assemblages consisting mainly of polychaetes, peracarid crustaceans and mollusks. The fauna from Argentinean seeps exhibited δ<sup>13</sup>C and δ<sup>15</sup>N stable isotope signatures indicative of multiple trophic levels, supported by both chemosynthetic and photosynthetic sources of energy. The difference in bubbling to the water column was not associated with different trophic input of chemosynthetically-derived sources of energy, suggesting that gas input is mediated by the bubbles trapped in the seafloor sediments. The presence of gas bubbles trapped in the surface sediments of the ocean floor allowed the detection of ecological and trophic characteristics of active chemosynthetic ecosystems. Integration of the sub-bottom dimension can help improve our understanding of the interactions of chemosynthetic ecosystems with seafloor fluid flow in a more reliable manner than the gas plumes. These cold seeps host significant biodiversity and ecosystem functions of the deep ocean. They fall within areas tendered for oil and gas industry development, but have not been a focus of conservation efforts to date. Information provided here can inform effective conservation actions and improve our understanding of the distribution of chemosynthetic ecosystems worldwide.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"211 ","pages":"Article 104361"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of deep-sea cold seeps from Argentina host singular trophic linkages and biodiversity\",\"authors\":\"M.E. Bravo , S. Principi , L.A. Levin , J.P. Ormazabal , C. Ferronato , F. Palma , J. Isola , A.A. Tassone\",\"doi\":\"10.1016/j.dsr.2024.104361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemosynthetic ecosystems host unique geological, biogeochemical, microbial and faunistic settings, which provide key ecosystem services for human wellbeing. In the Argentine continental margin, the existence of chemosynthetic ecosystems is still unknown. We present the first finding of chemosynthetic ecosystems in the Argentine deep sea. We assessed and compared biological and geological settings for cold seeps at Malvinas Basin and Colorado Basin and a control site (no gas) at Colorado Basin. We found two cold seeps with crater-like geomorphic features (pockmarks) of 500-m and 1000-m diameter at depths of ⁓500 m. Both cold seeps exhibited methane gas bubbles trapped at the surface of the seafloor, one exhibited seepage into the water column. Cold seeps hosted dense benthic macroinvertebrates (≥300 μm) assemblages consisting mainly of polychaetes, peracarid crustaceans and mollusks. The fauna from Argentinean seeps exhibited δ<sup>13</sup>C and δ<sup>15</sup>N stable isotope signatures indicative of multiple trophic levels, supported by both chemosynthetic and photosynthetic sources of energy. The difference in bubbling to the water column was not associated with different trophic input of chemosynthetically-derived sources of energy, suggesting that gas input is mediated by the bubbles trapped in the seafloor sediments. The presence of gas bubbles trapped in the surface sediments of the ocean floor allowed the detection of ecological and trophic characteristics of active chemosynthetic ecosystems. Integration of the sub-bottom dimension can help improve our understanding of the interactions of chemosynthetic ecosystems with seafloor fluid flow in a more reliable manner than the gas plumes. These cold seeps host significant biodiversity and ecosystem functions of the deep ocean. They fall within areas tendered for oil and gas industry development, but have not been a focus of conservation efforts to date. Information provided here can inform effective conservation actions and improve our understanding of the distribution of chemosynthetic ecosystems worldwide.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"211 \",\"pages\":\"Article 104361\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724001316\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001316","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Discovery of deep-sea cold seeps from Argentina host singular trophic linkages and biodiversity
Chemosynthetic ecosystems host unique geological, biogeochemical, microbial and faunistic settings, which provide key ecosystem services for human wellbeing. In the Argentine continental margin, the existence of chemosynthetic ecosystems is still unknown. We present the first finding of chemosynthetic ecosystems in the Argentine deep sea. We assessed and compared biological and geological settings for cold seeps at Malvinas Basin and Colorado Basin and a control site (no gas) at Colorado Basin. We found two cold seeps with crater-like geomorphic features (pockmarks) of 500-m and 1000-m diameter at depths of ⁓500 m. Both cold seeps exhibited methane gas bubbles trapped at the surface of the seafloor, one exhibited seepage into the water column. Cold seeps hosted dense benthic macroinvertebrates (≥300 μm) assemblages consisting mainly of polychaetes, peracarid crustaceans and mollusks. The fauna from Argentinean seeps exhibited δ13C and δ15N stable isotope signatures indicative of multiple trophic levels, supported by both chemosynthetic and photosynthetic sources of energy. The difference in bubbling to the water column was not associated with different trophic input of chemosynthetically-derived sources of energy, suggesting that gas input is mediated by the bubbles trapped in the seafloor sediments. The presence of gas bubbles trapped in the surface sediments of the ocean floor allowed the detection of ecological and trophic characteristics of active chemosynthetic ecosystems. Integration of the sub-bottom dimension can help improve our understanding of the interactions of chemosynthetic ecosystems with seafloor fluid flow in a more reliable manner than the gas plumes. These cold seeps host significant biodiversity and ecosystem functions of the deep ocean. They fall within areas tendered for oil and gas industry development, but have not been a focus of conservation efforts to date. Information provided here can inform effective conservation actions and improve our understanding of the distribution of chemosynthetic ecosystems worldwide.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.