{"title":"单位圆盘上带余项的奇异哈代-特鲁丁格-莫泽不等式的极值","authors":"Weiwei Wang","doi":"10.1007/s43034-024-00377-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(B\\subset {\\mathbb {R}}^2\\)</span> be the unit disc, and <span>\\({\\mathcal {H}}\\)</span> be the completion of <span>\\(C_0^\\infty ({B})\\)</span> under the norm </p><div><div><span>$$\\begin{aligned} \\Vert u\\Vert _{{\\mathcal {H}}}=\\Bigg (\\int _{{B}}|\\nabla u|^2 {\\textrm{d}}x- \\int _{{B}}\\frac{u^2}{(1-|x|^2)^2}{\\textrm{d}}x\\Bigg )^{\\frac{1}{2}}. \\end{aligned}$$</span></div></div><p>We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on <i>B</i> using the method of blow-up analysis and rearrangement argument: suppose <span>\\(0<t<2,\\)</span> there exists a constant <span>\\(\\delta _0>0\\)</span> such that for <span>\\(\\gamma \\le 4\\pi (1-t/2)+\\delta _0\\)</span> the supremum </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in {\\mathcal {H}},\\Vert u\\Vert _{{\\mathcal {H}}}\\le 1}\\int _{{B}}\\frac{{\\textrm{e}}^{4\\pi (1-t/2)u^2}-\\gamma u^2}{|x|^t} {\\textrm{d}}x \\end{aligned}$$</span></div></div><p>can be attained. This extends results of Wang and Ye (Adv Math 230:294–320, 2012) and Yin (Bull Iran Math Soc 49, 2023).</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on unit disc\",\"authors\":\"Weiwei Wang\",\"doi\":\"10.1007/s43034-024-00377-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(B\\\\subset {\\\\mathbb {R}}^2\\\\)</span> be the unit disc, and <span>\\\\({\\\\mathcal {H}}\\\\)</span> be the completion of <span>\\\\(C_0^\\\\infty ({B})\\\\)</span> under the norm </p><div><div><span>$$\\\\begin{aligned} \\\\Vert u\\\\Vert _{{\\\\mathcal {H}}}=\\\\Bigg (\\\\int _{{B}}|\\\\nabla u|^2 {\\\\textrm{d}}x- \\\\int _{{B}}\\\\frac{u^2}{(1-|x|^2)^2}{\\\\textrm{d}}x\\\\Bigg )^{\\\\frac{1}{2}}. \\\\end{aligned}$$</span></div></div><p>We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on <i>B</i> using the method of blow-up analysis and rearrangement argument: suppose <span>\\\\(0<t<2,\\\\)</span> there exists a constant <span>\\\\(\\\\delta _0>0\\\\)</span> such that for <span>\\\\(\\\\gamma \\\\le 4\\\\pi (1-t/2)+\\\\delta _0\\\\)</span> the supremum </p><div><div><span>$$\\\\begin{aligned} \\\\sup _{u\\\\in {\\\\mathcal {H}},\\\\Vert u\\\\Vert _{{\\\\mathcal {H}}}\\\\le 1}\\\\int _{{B}}\\\\frac{{\\\\textrm{e}}^{4\\\\pi (1-t/2)u^2}-\\\\gamma u^2}{|x|^t} {\\\\textrm{d}}x \\\\end{aligned}$$</span></div></div><p>can be attained. This extends results of Wang and Ye (Adv Math 230:294–320, 2012) and Yin (Bull Iran Math Soc 49, 2023).</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00377-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00377-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让(B子集{\mathbb {R}}^2\) 是单位圆盘,并且({\mathcal {H}})是在规范$$\begin{aligned}下的(C_0^\infty ({B})\)的完成。\Vert u\Vert _{{mathcal {H}}=\Bigg (\int _{{B}}|\nabla u|^2 {\textrm{d}}x- \int _{{B}}\frac{u^2}{(1-|x|^2)^2}{\textrm{d}}x\Bigg )^{\frac{1}{2}.\end{aligned}$$We derive extremals of singular Hardy-Trudinger-Moser inequality with remainder terms on B using the method of blow-up analysis and rearrangement argument: 假设 \(0<t<2,\) thereists a constant \(\delta _0>0\) such that for \(\gamma \le 4\pi (1-t/2)+\delta _0\) the supremum $$begin{aligned}.\sup _{u\in {{mathcal {H}}},\Vert u\Vert _{{mathcal {H}}}le 1}\int _{{B}}}frac{{\textrm{e}}^{4\pi (1-t/2)u^2}-\gamma u^2}{|x|^t} {\textrm{d}}x \end{aligned}$$ 可以达到。这扩展了 Wang 和 Ye (Adv Math 230:294-320, 2012) 以及 Yin (Bull Iran Math Soc 49, 2023) 的结果。
We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on B using the method of blow-up analysis and rearrangement argument: suppose \(0<t<2,\) there exists a constant \(\delta _0>0\) such that for \(\gamma \le 4\pi (1-t/2)+\delta _0\) the supremum
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.