单位圆盘上带余项的奇异哈代-特鲁丁格-莫泽不等式的极值

IF 1.2 3区 数学 Q1 MATHEMATICS
Weiwei Wang
{"title":"单位圆盘上带余项的奇异哈代-特鲁丁格-莫泽不等式的极值","authors":"Weiwei Wang","doi":"10.1007/s43034-024-00377-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(B\\subset {\\mathbb {R}}^2\\)</span> be the unit disc, and <span>\\({\\mathcal {H}}\\)</span> be the completion of <span>\\(C_0^\\infty ({B})\\)</span> under the norm </p><div><div><span>$$\\begin{aligned} \\Vert u\\Vert _{{\\mathcal {H}}}=\\Bigg (\\int _{{B}}|\\nabla u|^2 {\\textrm{d}}x- \\int _{{B}}\\frac{u^2}{(1-|x|^2)^2}{\\textrm{d}}x\\Bigg )^{\\frac{1}{2}}. \\end{aligned}$$</span></div></div><p>We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on <i>B</i> using the method of blow-up analysis and rearrangement argument: suppose <span>\\(0&lt;t&lt;2,\\)</span> there exists a constant <span>\\(\\delta _0&gt;0\\)</span> such that for <span>\\(\\gamma \\le 4\\pi (1-t/2)+\\delta _0\\)</span> the supremum </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in {\\mathcal {H}},\\Vert u\\Vert _{{\\mathcal {H}}}\\le 1}\\int _{{B}}\\frac{{\\textrm{e}}^{4\\pi (1-t/2)u^2}-\\gamma u^2}{|x|^t} {\\textrm{d}}x \\end{aligned}$$</span></div></div><p>can be attained. This extends results of Wang and Ye (Adv Math 230:294–320, 2012) and Yin (Bull Iran Math Soc 49, 2023).</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on unit disc\",\"authors\":\"Weiwei Wang\",\"doi\":\"10.1007/s43034-024-00377-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(B\\\\subset {\\\\mathbb {R}}^2\\\\)</span> be the unit disc, and <span>\\\\({\\\\mathcal {H}}\\\\)</span> be the completion of <span>\\\\(C_0^\\\\infty ({B})\\\\)</span> under the norm </p><div><div><span>$$\\\\begin{aligned} \\\\Vert u\\\\Vert _{{\\\\mathcal {H}}}=\\\\Bigg (\\\\int _{{B}}|\\\\nabla u|^2 {\\\\textrm{d}}x- \\\\int _{{B}}\\\\frac{u^2}{(1-|x|^2)^2}{\\\\textrm{d}}x\\\\Bigg )^{\\\\frac{1}{2}}. \\\\end{aligned}$$</span></div></div><p>We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on <i>B</i> using the method of blow-up analysis and rearrangement argument: suppose <span>\\\\(0&lt;t&lt;2,\\\\)</span> there exists a constant <span>\\\\(\\\\delta _0&gt;0\\\\)</span> such that for <span>\\\\(\\\\gamma \\\\le 4\\\\pi (1-t/2)+\\\\delta _0\\\\)</span> the supremum </p><div><div><span>$$\\\\begin{aligned} \\\\sup _{u\\\\in {\\\\mathcal {H}},\\\\Vert u\\\\Vert _{{\\\\mathcal {H}}}\\\\le 1}\\\\int _{{B}}\\\\frac{{\\\\textrm{e}}^{4\\\\pi (1-t/2)u^2}-\\\\gamma u^2}{|x|^t} {\\\\textrm{d}}x \\\\end{aligned}$$</span></div></div><p>can be attained. This extends results of Wang and Ye (Adv Math 230:294–320, 2012) and Yin (Bull Iran Math Soc 49, 2023).</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00377-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00377-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(B子集{\mathbb {R}}^2\) 是单位圆盘,并且({\mathcal {H}})是在规范$$\begin{aligned}下的(C_0^\infty ({B})\)的完成。\Vert u\Vert _{{mathcal {H}}=\Bigg (\int _{{B}}|\nabla u|^2 {\textrm{d}}x- \int _{{B}}\frac{u^2}{(1-|x|^2)^2}{\textrm{d}}x\Bigg )^{\frac{1}{2}.\end{aligned}$$We derive extremals of singular Hardy-Trudinger-Moser inequality with remainder terms on B using the method of blow-up analysis and rearrangement argument: 假设 \(0<t<2,\) thereists a constant \(\delta _0>0\) such that for \(\gamma \le 4\pi (1-t/2)+\delta _0\) the supremum $$begin{aligned}.\sup _{u\in {{mathcal {H}}},\Vert u\Vert _{{mathcal {H}}}le 1}\int _{{B}}}frac{{\textrm{e}}^{4\pi (1-t/2)u^2}-\gamma u^2}{|x|^t} {\textrm{d}}x \end{aligned}$$ 可以达到。这扩展了 Wang 和 Ye (Adv Math 230:294-320, 2012) 以及 Yin (Bull Iran Math Soc 49, 2023) 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on unit disc

Let \(B\subset {\mathbb {R}}^2\) be the unit disc, and \({\mathcal {H}}\) be the completion of \(C_0^\infty ({B})\) under the norm

$$\begin{aligned} \Vert u\Vert _{{\mathcal {H}}}=\Bigg (\int _{{B}}|\nabla u|^2 {\textrm{d}}x- \int _{{B}}\frac{u^2}{(1-|x|^2)^2}{\textrm{d}}x\Bigg )^{\frac{1}{2}}. \end{aligned}$$

We derive in this paper extremals of singular Hardy–Trudinger–Moser inequality with remainder terms on B using the method of blow-up analysis and rearrangement argument: suppose \(0<t<2,\) there exists a constant \(\delta _0>0\) such that for \(\gamma \le 4\pi (1-t/2)+\delta _0\) the supremum

$$\begin{aligned} \sup _{u\in {\mathcal {H}},\Vert u\Vert _{{\mathcal {H}}}\le 1}\int _{{B}}\frac{{\textrm{e}}^{4\pi (1-t/2)u^2}-\gamma u^2}{|x|^t} {\textrm{d}}x \end{aligned}$$

can be attained. This extends results of Wang and Ye (Adv Math 230:294–320, 2012) and Yin (Bull Iran Math Soc 49, 2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信