{"title":"亚临界雷诺数下螺旋槽对气缸阻力和流动诱发噪声的影响","authors":"Mingyang Xu, Wulong Hu, Zhangze Jiang","doi":"10.1063/5.0216273","DOIUrl":null,"url":null,"abstract":"The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of helical grooves on drag force and flow-induced noise of a cylinder under subcritical Reynolds numbers\",\"authors\":\"Mingyang Xu, Wulong Hu, Zhangze Jiang\",\"doi\":\"10.1063/5.0216273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0216273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of helical grooves on drag force and flow-induced noise of a cylinder under subcritical Reynolds numbers
The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.