PLASMA:针对恶意攻击者的私有、轻量级聚合统计数据

Dimitris Mouris, Pratik Sarkar, N. G. Tsoutsos
{"title":"PLASMA:针对恶意攻击者的私有、轻量级聚合统计数据","authors":"Dimitris Mouris, Pratik Sarkar, N. G. Tsoutsos","doi":"10.56553/popets-2024-0064","DOIUrl":null,"url":null,"abstract":"Private heavy-hitters is a data-collection task where multiple clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients' inputs. In this work, we introduce PLASMA: a private analytics framework in the three-server setting that protects the privacy of honest clients and the correctness of the protocol against a coalition of malicious clients and a malicious server.\n Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched consistency check, which are of independent interest. Our VIDPF introduces new methods to validate client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate multiple client sessions together in a batch. This drastically reduces server communication across multiple client sessions, resulting in significantly less communication compared to related works. Finally, we compare PLASMA with the recent works of Asharov et al. (CCS'22) and Poplar (S&P'21) and compare in terms of monetary cost for different input sizes.","PeriodicalId":519525,"journal":{"name":"Proceedings on Privacy Enhancing Technologies","volume":"66 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries\",\"authors\":\"Dimitris Mouris, Pratik Sarkar, N. G. Tsoutsos\",\"doi\":\"10.56553/popets-2024-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private heavy-hitters is a data-collection task where multiple clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients' inputs. In this work, we introduce PLASMA: a private analytics framework in the three-server setting that protects the privacy of honest clients and the correctness of the protocol against a coalition of malicious clients and a malicious server.\\n Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched consistency check, which are of independent interest. Our VIDPF introduces new methods to validate client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate multiple client sessions together in a batch. This drastically reduces server communication across multiple client sessions, resulting in significantly less communication compared to related works. Finally, we compare PLASMA with the recent works of Asharov et al. (CCS'22) and Poplar (S&P'21) and compare in terms of monetary cost for different input sizes.\",\"PeriodicalId\":519525,\"journal\":{\"name\":\"Proceedings on Privacy Enhancing Technologies\",\"volume\":\"66 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings on Privacy Enhancing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56553/popets-2024-0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56553/popets-2024-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

私密重击是一项数据收集任务,在这项任务中,多个客户端拥有私密位串,而数据收集服务器的目标是在不了解客户端输入的情况下识别出最受欢迎的位串。在这项工作中,我们介绍了 PLASMA:三服务器环境下的私有分析框架,它能保护诚实客户的隐私以及协议的正确性,使其免受恶意客户和恶意服务器联盟的攻击。我们的核心基本原理是可验证增量分布式点函数(VIDPF)和批量一致性检查,这两个基本原理具有独立的意义。我们的 VIDPF 引入了基于哈希算法验证客户端输入的新方法。同时,我们的批量一致性检查使用梅克尔树来批量验证多个客户端会话。这大大减少了多个客户端会话之间的服务器通信,与相关研究相比,通信量明显减少。最后,我们将 PLASMA 与 Asharov 等人(CCS'22)和 Poplar(S&P'21)的最新成果进行了比较,并就不同输入大小的货币成本进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries
Private heavy-hitters is a data-collection task where multiple clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients' inputs. In this work, we introduce PLASMA: a private analytics framework in the three-server setting that protects the privacy of honest clients and the correctness of the protocol against a coalition of malicious clients and a malicious server. Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched consistency check, which are of independent interest. Our VIDPF introduces new methods to validate client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate multiple client sessions together in a batch. This drastically reduces server communication across multiple client sessions, resulting in significantly less communication compared to related works. Finally, we compare PLASMA with the recent works of Asharov et al. (CCS'22) and Poplar (S&P'21) and compare in terms of monetary cost for different input sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信