{"title":"通过合成射流驱动提高风力涡轮机效率的计算流体动力学分析","authors":"A. Matiz-Chicacausa, S. Molano, O. L. Mejia","doi":"10.1063/5.0208120","DOIUrl":null,"url":null,"abstract":"Synthetic jets (SJs) offer a promising technique for enhancing aerodynamic efficiency in vertical-axis wind turbines (VAWTs) by controlling boundary layer separation on airfoils. This study uses computational fluid dynamics simulations to investigate the impact of SJs on a VAWT. The results show that SJs effectively delay stall onset, increasing lift coefficient at high angles of attack, leading to an estimated 17% improvement in output power when applied to full VAWT simulations using the actuator line model at Tip Speed Ratio equal to 3. Additionally, the study suggests SJs may positively affect wake behavior by reducing turbulence and modifying wake velocity profiles, which could further influence power generation in wind farms. This research underscores the importance of model selection in accurately predicting the aerodynamic benefits of SJs, providing a foundational understanding for future exploration in VAWT applications.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational fluid dynamics analysis on enhancing wind turbine efficiency through synthetic jet actuation\",\"authors\":\"A. Matiz-Chicacausa, S. Molano, O. L. Mejia\",\"doi\":\"10.1063/5.0208120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic jets (SJs) offer a promising technique for enhancing aerodynamic efficiency in vertical-axis wind turbines (VAWTs) by controlling boundary layer separation on airfoils. This study uses computational fluid dynamics simulations to investigate the impact of SJs on a VAWT. The results show that SJs effectively delay stall onset, increasing lift coefficient at high angles of attack, leading to an estimated 17% improvement in output power when applied to full VAWT simulations using the actuator line model at Tip Speed Ratio equal to 3. Additionally, the study suggests SJs may positively affect wake behavior by reducing turbulence and modifying wake velocity profiles, which could further influence power generation in wind farms. This research underscores the importance of model selection in accurately predicting the aerodynamic benefits of SJs, providing a foundational understanding for future exploration in VAWT applications.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208120\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0208120","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A computational fluid dynamics analysis on enhancing wind turbine efficiency through synthetic jet actuation
Synthetic jets (SJs) offer a promising technique for enhancing aerodynamic efficiency in vertical-axis wind turbines (VAWTs) by controlling boundary layer separation on airfoils. This study uses computational fluid dynamics simulations to investigate the impact of SJs on a VAWT. The results show that SJs effectively delay stall onset, increasing lift coefficient at high angles of attack, leading to an estimated 17% improvement in output power when applied to full VAWT simulations using the actuator line model at Tip Speed Ratio equal to 3. Additionally, the study suggests SJs may positively affect wake behavior by reducing turbulence and modifying wake velocity profiles, which could further influence power generation in wind farms. This research underscores the importance of model selection in accurately predicting the aerodynamic benefits of SJs, providing a foundational understanding for future exploration in VAWT applications.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy