调整 CAR T 细胞疗法,提高疗效并降低毒性

IF 5 3区 医学 Q1 HEMATOLOGY
Danielle Blud , Patricia Rubio-Reyes , Rachel Perret , Robert Weinkove
{"title":"调整 CAR T 细胞疗法,提高疗效并降低毒性","authors":"Danielle Blud ,&nbsp;Patricia Rubio-Reyes ,&nbsp;Rachel Perret ,&nbsp;Robert Weinkove","doi":"10.1053/j.seminhematol.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to “tune” CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.</div></div>","PeriodicalId":21684,"journal":{"name":"Seminars in hematology","volume":"61 5","pages":"Pages 333-344"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning CAR T-cell therapies for efficacy and reduced toxicity\",\"authors\":\"Danielle Blud ,&nbsp;Patricia Rubio-Reyes ,&nbsp;Rachel Perret ,&nbsp;Robert Weinkove\",\"doi\":\"10.1053/j.seminhematol.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to “tune” CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.</div></div>\",\"PeriodicalId\":21684,\"journal\":{\"name\":\"Seminars in hematology\",\"volume\":\"61 5\",\"pages\":\"Pages 333-344\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0037196324000829\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0037196324000829","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

嵌合抗原受体(CAR)T 细胞疗法是治疗某些复发或难治性 B 细胞癌症的标准疗法。然而,许多患者对 CAR T 细胞疗法没有反应或稍后复发,短期和长期毒性反应很常见,而且目前的 CAR T 细胞疗法对实体瘤的疗效有限。CAR T 细胞制造中固有的基因工程技术为控制细胞特性和设计可克服这些限制的产品提供了前所未有的机会。本综述总结了 "调整 "CAR T 细胞以获得最佳疗效和安全性的现有方法。本文讨论了典型 CAR 的组成成分以及可影响 CAR T 细胞功能的修饰。综述了在 CAR T 细胞中植入被动、可诱导或自主控制机制的方法,从而有选择性地限制或增强 CAR T 细胞的活性。我们还考虑了制造过程对 CAR T 细胞功能的影响,包括限制 CAR T 细胞末端分化和衰竭的方法,以及使用特定 T 细胞亚群作为 CAR T 细胞的起始材料。我们还讨论了多序列转基因和多重基因编辑的使用。最后,我们强调了创新临床试验设计的必要性,只有这样才能充分利用 CAR T 细胞疗法带来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning CAR T-cell therapies for efficacy and reduced toxicity
Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to “tune” CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in hematology
Seminars in hematology 医学-血液学
CiteScore
6.20
自引率
2.80%
发文量
30
审稿时长
35 days
期刊介绍: Seminars in Hematology aims to present subjects of current importance in clinical hematology, including related areas of oncology, hematopathology, and blood banking. The journal''s unique issue structure allows for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering a variety of articles that present dynamic and front-line material immediately influencing the field. Seminars in Hematology is devoted to making the important and current work accessible, comprehensible, and valuable to the practicing physician, young investigator, clinical practitioners, and internists/paediatricians with strong interests in blood diseases. Seminars in Hematology publishes original research, reviews, short communications and mini- reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信