{"title":"外部空气动力学中的欧拉-拉格朗日混合求解器:机翼失速建模与分析","authors":"R. Pasolari, C. J. Ferreira, A. van Zuijlen","doi":"10.1063/5.0216634","DOIUrl":null,"url":null,"abstract":"Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary layers, while Lagrangian methods excel in reducing numerical diffusion in flow convection. Building on our prior development of a two-dimensional hybrid solver that combines OpenFOAM with vortex particle method, this paper extends its application to the complex phenomena of airfoil stall at low Reynolds numbers. Specifically, we examine both static and dynamic stall conditions of a National Advisory Committee for Aeronautics (NACA) airfoil series 0012 (NACA0012) across a wide range of attack angles and oscillation frequencies, comparing our results with established data. The findings demonstrate the accuracy of hybrid Eulerian–Lagrangian solvers in replicating known stall behaviors, underscoring their potential for advanced aerodynamic studies. This work not only confirms the capability of hybrid solvers in accurately modeling challenging flows but also paves the way for their increased involvement in the field of external aerodynamics.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eulerian–Lagrangian hybrid solvers in external aerodynamics: Modeling and analysis of airfoil stall\",\"authors\":\"R. Pasolari, C. J. Ferreira, A. van Zuijlen\",\"doi\":\"10.1063/5.0216634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary layers, while Lagrangian methods excel in reducing numerical diffusion in flow convection. Building on our prior development of a two-dimensional hybrid solver that combines OpenFOAM with vortex particle method, this paper extends its application to the complex phenomena of airfoil stall at low Reynolds numbers. Specifically, we examine both static and dynamic stall conditions of a National Advisory Committee for Aeronautics (NACA) airfoil series 0012 (NACA0012) across a wide range of attack angles and oscillation frequencies, comparing our results with established data. The findings demonstrate the accuracy of hybrid Eulerian–Lagrangian solvers in replicating known stall behaviors, underscoring their potential for advanced aerodynamic studies. This work not only confirms the capability of hybrid solvers in accurately modeling challenging flows but also paves the way for their increased involvement in the field of external aerodynamics.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0216634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eulerian–Lagrangian hybrid solvers in external aerodynamics: Modeling and analysis of airfoil stall
Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary layers, while Lagrangian methods excel in reducing numerical diffusion in flow convection. Building on our prior development of a two-dimensional hybrid solver that combines OpenFOAM with vortex particle method, this paper extends its application to the complex phenomena of airfoil stall at low Reynolds numbers. Specifically, we examine both static and dynamic stall conditions of a National Advisory Committee for Aeronautics (NACA) airfoil series 0012 (NACA0012) across a wide range of attack angles and oscillation frequencies, comparing our results with established data. The findings demonstrate the accuracy of hybrid Eulerian–Lagrangian solvers in replicating known stall behaviors, underscoring their potential for advanced aerodynamic studies. This work not only confirms the capability of hybrid solvers in accurately modeling challenging flows but also paves the way for their increased involvement in the field of external aerodynamics.