不同刀具角度和加工参数下 ST-37 钢车削过程中的刀具磨损和表面粗糙度优化

Y. Burhanuddin, S. Harun, G. Ibrahim, A. Hamni
{"title":"不同刀具角度和加工参数下 ST-37 钢车削过程中的刀具磨损和表面粗糙度优化","authors":"Y. Burhanuddin, S. Harun, G. Ibrahim, A. Hamni","doi":"10.30811/jpl.v22i3.4983","DOIUrl":null,"url":null,"abstract":"The process of cutting low carbon steel (ST-37) typically utilizes High-Speed Steel (HSS) tools owing to their high hardness, affordability, and ease of shaping tool geometry. In machining, tool geometry plays a crucial role in the material cutting process and determines the quality of the final product, particularly surface roughness. The objective of this research is to achieve optimal surface roughness by varying the tool geometry and nose radius. This study employed an experimental approach using ST-37 and HSS tools. The variations in tool geometry include side rake angles of 12°, 15°, and 18°; side cutting edge angles of 85°, 80°, and 75°; and nose radii of 0 mm, 0.4 mm, and 0.8 mm. The machining parameters applied consist of a cutting depth of 1 mm and 2 mm, spindle rotation speeds of 185 rpm, 425 rpm, and 624 rpm, and a feed rate of 0.05 mm/rev, 0.075 mm/rev, and 0.1 mm/rev. Tool wear measurements were captured using a USB camera, whereas the surface roughness was assessed using a surface roughness tester. The impact of the tool geometry on the surface roughness was analyzed using the Taguchi-Grey Relational Analysis (Taguchi-GRA) and ANOVA methods. The optimal combination for ST-37 lathe machining with a sharpening tool is: A1 (cutting depth 1 mm), B1 (cutting speed 17.42 m/min), C3 (feed 0.05 mm/rev), D1 (corner radius 0 mm), E3 (side rake angle γ 18°), and F3 (side cutting edge angle γ 75°). According to the Analysis of Variance (ANOVA), three factors—cutting speed, tool tip angle, and chip angle—should be considered to achieve minimal tool wear and desirable surface roughness during machining","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"114 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of tool wear and surface roughness in ST-37 steel turning process with varying tool angles and machining parameters\",\"authors\":\"Y. Burhanuddin, S. Harun, G. Ibrahim, A. Hamni\",\"doi\":\"10.30811/jpl.v22i3.4983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of cutting low carbon steel (ST-37) typically utilizes High-Speed Steel (HSS) tools owing to their high hardness, affordability, and ease of shaping tool geometry. In machining, tool geometry plays a crucial role in the material cutting process and determines the quality of the final product, particularly surface roughness. The objective of this research is to achieve optimal surface roughness by varying the tool geometry and nose radius. This study employed an experimental approach using ST-37 and HSS tools. The variations in tool geometry include side rake angles of 12°, 15°, and 18°; side cutting edge angles of 85°, 80°, and 75°; and nose radii of 0 mm, 0.4 mm, and 0.8 mm. The machining parameters applied consist of a cutting depth of 1 mm and 2 mm, spindle rotation speeds of 185 rpm, 425 rpm, and 624 rpm, and a feed rate of 0.05 mm/rev, 0.075 mm/rev, and 0.1 mm/rev. Tool wear measurements were captured using a USB camera, whereas the surface roughness was assessed using a surface roughness tester. The impact of the tool geometry on the surface roughness was analyzed using the Taguchi-Grey Relational Analysis (Taguchi-GRA) and ANOVA methods. The optimal combination for ST-37 lathe machining with a sharpening tool is: A1 (cutting depth 1 mm), B1 (cutting speed 17.42 m/min), C3 (feed 0.05 mm/rev), D1 (corner radius 0 mm), E3 (side rake angle γ 18°), and F3 (side cutting edge angle γ 75°). According to the Analysis of Variance (ANOVA), three factors—cutting speed, tool tip angle, and chip angle—should be considered to achieve minimal tool wear and desirable surface roughness during machining\",\"PeriodicalId\":166128,\"journal\":{\"name\":\"Jurnal POLIMESIN\",\"volume\":\"114 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal POLIMESIN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30811/jpl.v22i3.4983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal POLIMESIN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30811/jpl.v22i3.4983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低碳钢(ST-37)的切削过程通常使用高速钢(HSS)刀具,因为其硬度高、价格低廉,而且易于塑造刀具几何形状。在机械加工中,刀具几何形状在材料切削过程中起着至关重要的作用,并决定着最终产品的质量,尤其是表面粗糙度。本研究的目的是通过改变刀具几何形状和刀头半径来达到最佳表面粗糙度。这项研究采用了一种使用 ST-37 和高速钢刀具的实验方法。刀具几何形状的变化包括侧前角 12°、15° 和 18°;侧切削刃角度 85°、80° 和 75°;刀头半径 0 毫米、0.4 毫米和 0.8 毫米。加工参数包括切削深度 1 毫米和 2 毫米,主轴转速 185 转/分钟、425 转/分钟和 624 转/分钟,进给速度 0.05 毫米/转、0.075 毫米/转和 0.1 毫米/转。刀具磨损测量使用 USB 摄像头,表面粗糙度则使用表面粗糙度测试仪进行评估。使用田口-格雷关系分析法(Taguchi-GRA)和方差分析法分析了刀具几何形状对表面粗糙度的影响。使用刃磨刀具进行 ST-37 车床加工的最佳组合为A1(切削深度 1 mm)、B1(切削速度 17.42 m/min)、C3(进给 0.05 mm/rev)、D1(转角半径 0 mm)、E3(侧倾角 γ 18°)和 F3(侧切削刃角 γ 75°)。根据方差分析 (ANOVA),在加工过程中应考虑切削速度、刀尖角和切屑角三个因素,以达到最小的刀具磨损和理想的表面粗糙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of tool wear and surface roughness in ST-37 steel turning process with varying tool angles and machining parameters
The process of cutting low carbon steel (ST-37) typically utilizes High-Speed Steel (HSS) tools owing to their high hardness, affordability, and ease of shaping tool geometry. In machining, tool geometry plays a crucial role in the material cutting process and determines the quality of the final product, particularly surface roughness. The objective of this research is to achieve optimal surface roughness by varying the tool geometry and nose radius. This study employed an experimental approach using ST-37 and HSS tools. The variations in tool geometry include side rake angles of 12°, 15°, and 18°; side cutting edge angles of 85°, 80°, and 75°; and nose radii of 0 mm, 0.4 mm, and 0.8 mm. The machining parameters applied consist of a cutting depth of 1 mm and 2 mm, spindle rotation speeds of 185 rpm, 425 rpm, and 624 rpm, and a feed rate of 0.05 mm/rev, 0.075 mm/rev, and 0.1 mm/rev. Tool wear measurements were captured using a USB camera, whereas the surface roughness was assessed using a surface roughness tester. The impact of the tool geometry on the surface roughness was analyzed using the Taguchi-Grey Relational Analysis (Taguchi-GRA) and ANOVA methods. The optimal combination for ST-37 lathe machining with a sharpening tool is: A1 (cutting depth 1 mm), B1 (cutting speed 17.42 m/min), C3 (feed 0.05 mm/rev), D1 (corner radius 0 mm), E3 (side rake angle γ 18°), and F3 (side cutting edge angle γ 75°). According to the Analysis of Variance (ANOVA), three factors—cutting speed, tool tip angle, and chip angle—should be considered to achieve minimal tool wear and desirable surface roughness during machining
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信