利用增强型潜在 Dirichlet 分配从多源域提取特征词

Q2 Mathematics
R. Dhanal, V. R. Ghorpade
{"title":"利用增强型潜在 Dirichlet 分配从多源域提取特征词","authors":"R. Dhanal, V. R. Ghorpade","doi":"10.11591/ijeecs.v35.i1.pp475-484","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect term extraction from multi-source domain using enhanced latent Dirichlet allocation\",\"authors\":\"R. Dhanal, V. R. Ghorpade\",\"doi\":\"10.11591/ijeecs.v35.i1.pp475-484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v35.i1.pp475-484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp475-484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过引入包含医院、笔记本电脑、餐馆、手机和电子产品在内的多源领域数据集,对不同领域的情感分析进行了全面探索。利用这个广泛的数据集,我们提出了一种用于主题建模和方面提取的增强型潜在 Dirichlet 分配(E-LDA)模型,该模型表现出卓越的性能,一致性得分高达 0.5727。与传统 LDA 和其他现有模型的对比分析表明,E-LDA 在捕捉不同领域中的情感和特定属性方面非常有效。提取的主题和方面揭示了特定领域情感和方面的宝贵见解,有助于情感分析方法的进步。研究结果强调了考虑多源数据集的重要性,以便更全面地了解不同文本语料库中的情感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect term extraction from multi-source domain using enhanced latent Dirichlet allocation
This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信