{"title":"利用增强型潜在 Dirichlet 分配从多源域提取特征词","authors":"R. Dhanal, V. R. Ghorpade","doi":"10.11591/ijeecs.v35.i1.pp475-484","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect term extraction from multi-source domain using enhanced latent Dirichlet allocation\",\"authors\":\"R. Dhanal, V. R. Ghorpade\",\"doi\":\"10.11591/ijeecs.v35.i1.pp475-484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v35.i1.pp475-484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp475-484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Aspect term extraction from multi-source domain using enhanced latent Dirichlet allocation
This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]