克拉滕天然沸石在不同活化温度下的氮吸附能力分析

Novi Caroko, S. Sukamta
{"title":"克拉滕天然沸石在不同活化温度下的氮吸附能力分析","authors":"Novi Caroko, S. Sukamta","doi":"10.30811/jpl.v22i3.4882","DOIUrl":null,"url":null,"abstract":"The Pressure Swing Adsorption (PSA) method operates by passing air through an adsorbent to produce concentrated oxygen gas. Zeolites are commonly utilized as adsorbents due to their ability to adsorb nitrogen from the surrounding air. Two types of zeolites commonly employed are natural and synthetic zeolites. While the utilization of natural zeolites as adsorbents in oxygen purification remains limited, their potential as an alternative adsorbent is worth exploring in this field. This study focused on developing physically activated Klaten natural zeolite as an adsorbent to enhance oxygen purity. Physical activation involved heating for 1.5 hours using an electric oven at four temperature variations (250ºC, 300ºC, 350ºC, and 400ºC). Additionally, four distinct flow rates were tested: 0.1; 0.5; 1.0; and 1.5 lpm. Oxygen purification testing revealed that higher activation temperatures led to greater increases in oxygen concentration. The highest increase of 2.45% was achieved at an activation temperature of 400ºC, while the lowest increase of 1.75% was observed at 250ºC with a flow rate of 0.1 lpm. With a 10-minute holding period, oxygen content during the adsorption process ranged from 1.35% to 2.45%, compared to 0.60%-0.75% without holding. Physical activation of zeolite from Klaten enhanced its nitrogen absorption capacity, indicating the potential of natural zeolite from Klaten for oxygen purification through optimized activation processes, possibly via chemical activation","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"32 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of nitrogen adsorption capability at various activation temperatures of Klaten natural zeolite\",\"authors\":\"Novi Caroko, S. Sukamta\",\"doi\":\"10.30811/jpl.v22i3.4882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pressure Swing Adsorption (PSA) method operates by passing air through an adsorbent to produce concentrated oxygen gas. Zeolites are commonly utilized as adsorbents due to their ability to adsorb nitrogen from the surrounding air. Two types of zeolites commonly employed are natural and synthetic zeolites. While the utilization of natural zeolites as adsorbents in oxygen purification remains limited, their potential as an alternative adsorbent is worth exploring in this field. This study focused on developing physically activated Klaten natural zeolite as an adsorbent to enhance oxygen purity. Physical activation involved heating for 1.5 hours using an electric oven at four temperature variations (250ºC, 300ºC, 350ºC, and 400ºC). Additionally, four distinct flow rates were tested: 0.1; 0.5; 1.0; and 1.5 lpm. Oxygen purification testing revealed that higher activation temperatures led to greater increases in oxygen concentration. The highest increase of 2.45% was achieved at an activation temperature of 400ºC, while the lowest increase of 1.75% was observed at 250ºC with a flow rate of 0.1 lpm. With a 10-minute holding period, oxygen content during the adsorption process ranged from 1.35% to 2.45%, compared to 0.60%-0.75% without holding. Physical activation of zeolite from Klaten enhanced its nitrogen absorption capacity, indicating the potential of natural zeolite from Klaten for oxygen purification through optimized activation processes, possibly via chemical activation\",\"PeriodicalId\":166128,\"journal\":{\"name\":\"Jurnal POLIMESIN\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal POLIMESIN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30811/jpl.v22i3.4882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal POLIMESIN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30811/jpl.v22i3.4882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变压吸附法(PSA)的工作原理是让空气通过吸附剂,产生浓缩的含氧气体。由于沸石具有从周围空气中吸附氮气的能力,因此通常被用作吸附剂。常用的沸石有天然沸石和合成沸石两种。虽然天然沸石作为吸附剂在氧气净化中的应用仍然有限,但其作为替代吸附剂的潜力值得在这一领域进行探索。本研究的重点是开发物理活化克拉登天然沸石作为吸附剂,以提高氧气纯度。物理活化包括使用电烤箱在四种温度变化(250ºC、300ºC、350ºC 和 400ºC)下加热 1.5 小时。此外,还测试了四种不同的流速:0.1、0.5、1.0 和 1.5 lpm。氧气净化测试表明,活化温度越高,氧气浓度越高。在活化温度为 400ºC 时,氧气浓度最高增加了 2.45%,而在活化温度为 250ºC 且流速为 0.1 lpm 时,氧气浓度最低增加了 1.75%。保温 10 分钟后,吸附过程中的氧含量为 1.35% 至 2.45%,而不保温时的氧含量为 0.60% 至 0.75%。克拉通沸石的物理活化增强了其氮吸收能力,这表明通过优化活化过程(可能是通过化学活化),克拉通天然沸石具有净化氧气的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of nitrogen adsorption capability at various activation temperatures of Klaten natural zeolite
The Pressure Swing Adsorption (PSA) method operates by passing air through an adsorbent to produce concentrated oxygen gas. Zeolites are commonly utilized as adsorbents due to their ability to adsorb nitrogen from the surrounding air. Two types of zeolites commonly employed are natural and synthetic zeolites. While the utilization of natural zeolites as adsorbents in oxygen purification remains limited, their potential as an alternative adsorbent is worth exploring in this field. This study focused on developing physically activated Klaten natural zeolite as an adsorbent to enhance oxygen purity. Physical activation involved heating for 1.5 hours using an electric oven at four temperature variations (250ºC, 300ºC, 350ºC, and 400ºC). Additionally, four distinct flow rates were tested: 0.1; 0.5; 1.0; and 1.5 lpm. Oxygen purification testing revealed that higher activation temperatures led to greater increases in oxygen concentration. The highest increase of 2.45% was achieved at an activation temperature of 400ºC, while the lowest increase of 1.75% was observed at 250ºC with a flow rate of 0.1 lpm. With a 10-minute holding period, oxygen content during the adsorption process ranged from 1.35% to 2.45%, compared to 0.60%-0.75% without holding. Physical activation of zeolite from Klaten enhanced its nitrogen absorption capacity, indicating the potential of natural zeolite from Klaten for oxygen purification through optimized activation processes, possibly via chemical activation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信