当前描述和利用纳米尺度摩擦的总体框架展望

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Antonio Cammarata, Elliot Perviz, Tomas Polcar
{"title":"当前描述和利用纳米尺度摩擦的总体框架展望","authors":"Antonio Cammarata,&nbsp;Elliot Perviz,&nbsp;Tomas Polcar","doi":"10.1016/j.progsurf.2024.100753","DOIUrl":null,"url":null,"abstract":"<div><p><span>Macroscopic friction is the result of the interplay of several processes occurring at different scales; an atom-scale description of the tribological interactions is then paramount for the explanation of the elementary phenomena at the basis of such processes, and finds immediate application in technological fields involving nanostructured devices. At the moment, there is no theory which tells us what is the friction coefficient<span> given the atomic description of two surfaces in contact: it is measured experimentally or computationally case by case at specific environmental parameters and chemical composition of the moving surfaces. A general theory describing nanoscale friction is then desirable to reduce human effort, search time and material costs necessary to design new </span></span>tribological materials<span><span><span> with target response. We here provide a selective overview of theoretical and computational models which, from our perspective, may pave the avenue towards a unified theoretical framework of nanofriction. In this respect, we believe that the key aspect is to identify a novel mathematical formulation of friction based on its </span>energetic<span> aspects, i.e. energy dissipation, rather than its dynamical effects, i.e. hindering the relative motion of interacting surfaces. Ultimately, such avenue might lead to a way to predict the value of the </span></span>friction coefficient<span> of two surfaces in contact from the sole knowledge of the atom types and their arrangement, without the need to measure it in operative conditions: one of the biggest challenges in the field of nanotribology.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"99 3","pages":"Article 100753"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current perspective towards a general framework to describe and harness friction at the nanoscale\",\"authors\":\"Antonio Cammarata,&nbsp;Elliot Perviz,&nbsp;Tomas Polcar\",\"doi\":\"10.1016/j.progsurf.2024.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Macroscopic friction is the result of the interplay of several processes occurring at different scales; an atom-scale description of the tribological interactions is then paramount for the explanation of the elementary phenomena at the basis of such processes, and finds immediate application in technological fields involving nanostructured devices. At the moment, there is no theory which tells us what is the friction coefficient<span> given the atomic description of two surfaces in contact: it is measured experimentally or computationally case by case at specific environmental parameters and chemical composition of the moving surfaces. A general theory describing nanoscale friction is then desirable to reduce human effort, search time and material costs necessary to design new </span></span>tribological materials<span><span><span> with target response. We here provide a selective overview of theoretical and computational models which, from our perspective, may pave the avenue towards a unified theoretical framework of nanofriction. In this respect, we believe that the key aspect is to identify a novel mathematical formulation of friction based on its </span>energetic<span> aspects, i.e. energy dissipation, rather than its dynamical effects, i.e. hindering the relative motion of interacting surfaces. Ultimately, such avenue might lead to a way to predict the value of the </span></span>friction coefficient<span> of two surfaces in contact from the sole knowledge of the atom types and their arrangement, without the need to measure it in operative conditions: one of the biggest challenges in the field of nanotribology.</span></span></p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"99 3\",\"pages\":\"Article 100753\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681624000194\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681624000194","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

宏观摩擦是在不同尺度上发生的多个过程相互作用的结果;因此,对摩擦学相互作用的原子尺度描述对于解释这些过程基础上的基本现象至关重要,并可立即应用于涉及纳米结构装置的技术领域。目前,还没有一种理论能告诉我们,根据对两个接触表面的原子描述,摩擦系数是多少:摩擦系数是在特定环境参数和运动表面化学成分的情况下,通过实验或计算逐个测得的。因此,我们需要一个描述纳米级摩擦的通用理论,以减少设计具有目标响应的新型摩擦材料所需的人力、搜索时间和材料成本。我们在此有选择性地概述了一些理论和计算模型,从我们的角度来看,这些模型可以为建立统一的纳米摩擦理论框架铺平道路。在这方面,我们认为关键在于根据摩擦的能量方面(即能量耗散),而不是其动态效应(即阻碍相互作用表面的相对运动),确定摩擦的新型数学表达式。最终,这种方法可能会导致仅凭原子类型及其排列的知识就能预测两个接触表面的摩擦系数值,而无需在操作条件下进行测量:这是纳米技术领域最大的挑战之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current perspective towards a general framework to describe and harness friction at the nanoscale

Macroscopic friction is the result of the interplay of several processes occurring at different scales; an atom-scale description of the tribological interactions is then paramount for the explanation of the elementary phenomena at the basis of such processes, and finds immediate application in technological fields involving nanostructured devices. At the moment, there is no theory which tells us what is the friction coefficient given the atomic description of two surfaces in contact: it is measured experimentally or computationally case by case at specific environmental parameters and chemical composition of the moving surfaces. A general theory describing nanoscale friction is then desirable to reduce human effort, search time and material costs necessary to design new tribological materials with target response. We here provide a selective overview of theoretical and computational models which, from our perspective, may pave the avenue towards a unified theoretical framework of nanofriction. In this respect, we believe that the key aspect is to identify a novel mathematical formulation of friction based on its energetic aspects, i.e. energy dissipation, rather than its dynamical effects, i.e. hindering the relative motion of interacting surfaces. Ultimately, such avenue might lead to a way to predict the value of the friction coefficient of two surfaces in contact from the sole knowledge of the atom types and their arrangement, without the need to measure it in operative conditions: one of the biggest challenges in the field of nanotribology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信