Sevgin Dıblan , Pelin Salum , Fatma Ulusal , Zafer Erbay
{"title":"浓缩乳清蛋白与不同碳水化合物共轭的影响:监测结构和技术功能变化","authors":"Sevgin Dıblan , Pelin Salum , Fatma Ulusal , Zafer Erbay","doi":"10.1016/j.idairyj.2024.106036","DOIUrl":null,"url":null,"abstract":"<div><p>This study utilized whey protein concentrate (WPC) as the primary protein source, employing the Maillard reaction to link it with three distinct carbohydrates: lactose, maltodextrin, and gum Arabic. Mixtures were prepared with a 1:4 protein-to-carbohydrate ratio, and conjugation was performed using dry heating at a temperature of 60 °C, 50% relative humidity for 8 h processing time. Under the same conditions, native WPC was heated as a control group. The formation of conjugates was tracked by monitoring absorbance changes, browning index (BI), and reduction in free amino groups (FAG). All conjugates exhibited significant loss of FAG, correlating with an increase in BI. Shifts in protein fingerprint bands observed via Fourier Transform Infrared Spectroscopy suggested potential protein-carbohydrate interactions, while X-ray diffraction showed increased sample crystallinity post-conjugation. Solubility assessments across pH levels (3.0–8.0) indicated a 10–13% rise in solubility for conjugated samples compared to mixtures, broadening their potential applications. Moreover, the emulsion stability index demonstrated improved stability after conjugation. Overall, the Maillard reaction-mediated conjugation enhanced the solubility and stability of emulsions.</p></div>","PeriodicalId":13854,"journal":{"name":"International Dairy Journal","volume":"158 ","pages":"Article 106036"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of conjugation of whey protein concentrate with different carbohydrates: Monitoring structural and technofunctional variations\",\"authors\":\"Sevgin Dıblan , Pelin Salum , Fatma Ulusal , Zafer Erbay\",\"doi\":\"10.1016/j.idairyj.2024.106036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study utilized whey protein concentrate (WPC) as the primary protein source, employing the Maillard reaction to link it with three distinct carbohydrates: lactose, maltodextrin, and gum Arabic. Mixtures were prepared with a 1:4 protein-to-carbohydrate ratio, and conjugation was performed using dry heating at a temperature of 60 °C, 50% relative humidity for 8 h processing time. Under the same conditions, native WPC was heated as a control group. The formation of conjugates was tracked by monitoring absorbance changes, browning index (BI), and reduction in free amino groups (FAG). All conjugates exhibited significant loss of FAG, correlating with an increase in BI. Shifts in protein fingerprint bands observed via Fourier Transform Infrared Spectroscopy suggested potential protein-carbohydrate interactions, while X-ray diffraction showed increased sample crystallinity post-conjugation. Solubility assessments across pH levels (3.0–8.0) indicated a 10–13% rise in solubility for conjugated samples compared to mixtures, broadening their potential applications. Moreover, the emulsion stability index demonstrated improved stability after conjugation. Overall, the Maillard reaction-mediated conjugation enhanced the solubility and stability of emulsions.</p></div>\",\"PeriodicalId\":13854,\"journal\":{\"name\":\"International Dairy Journal\",\"volume\":\"158 \",\"pages\":\"Article 106036\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Dairy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958694624001560\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Dairy Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958694624001560","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of conjugation of whey protein concentrate with different carbohydrates: Monitoring structural and technofunctional variations
This study utilized whey protein concentrate (WPC) as the primary protein source, employing the Maillard reaction to link it with three distinct carbohydrates: lactose, maltodextrin, and gum Arabic. Mixtures were prepared with a 1:4 protein-to-carbohydrate ratio, and conjugation was performed using dry heating at a temperature of 60 °C, 50% relative humidity for 8 h processing time. Under the same conditions, native WPC was heated as a control group. The formation of conjugates was tracked by monitoring absorbance changes, browning index (BI), and reduction in free amino groups (FAG). All conjugates exhibited significant loss of FAG, correlating with an increase in BI. Shifts in protein fingerprint bands observed via Fourier Transform Infrared Spectroscopy suggested potential protein-carbohydrate interactions, while X-ray diffraction showed increased sample crystallinity post-conjugation. Solubility assessments across pH levels (3.0–8.0) indicated a 10–13% rise in solubility for conjugated samples compared to mixtures, broadening their potential applications. Moreover, the emulsion stability index demonstrated improved stability after conjugation. Overall, the Maillard reaction-mediated conjugation enhanced the solubility and stability of emulsions.
期刊介绍:
The International Dairy Journal publishes significant advancements in dairy science and technology in the form of research articles and critical reviews that are of relevance to the broader international dairy community. Within this scope, research on the science and technology of milk and dairy products and the nutritional and health aspects of dairy foods are included; the journal pays particular attention to applied research and its interface with the dairy industry.
The journal''s coverage includes the following, where directly applicable to dairy science and technology:
• Chemistry and physico-chemical properties of milk constituents
• Microbiology, food safety, enzymology, biotechnology
• Processing and engineering
• Emulsion science, food structure, and texture
• Raw material quality and effect on relevant products
• Flavour and off-flavour development
• Technological functionality and applications of dairy ingredients
• Sensory and consumer sciences
• Nutrition and substantiation of human health implications of milk components or dairy products
International Dairy Journal does not publish papers related to milk production, animal health and other aspects of on-farm milk production unless there is a clear relationship to dairy technology, human health or final product quality.