Neda Eghtesadi , Kayode Olaifa , Tri T. Pham , Vito Capriati , Obinna M. Ajunwa , Enrico Marsili
{"title":"胆碱深共晶溶剂的渗透调节作用诱导枯草芽孢杆菌生物膜的电活性","authors":"Neda Eghtesadi , Kayode Olaifa , Tri T. Pham , Vito Capriati , Obinna M. Ajunwa , Enrico Marsili","doi":"10.1016/j.enzmictec.2024.110485","DOIUrl":null,"url":null,"abstract":"<div><p>Gram-positive <em>Bacillus subtilis</em> is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in <em>B. subtilis</em> biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in <em>B. subtilis</em>. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose <em>B. subtilis</em> to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol<sup>−1</sup>) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH<sub>2</sub>PO<sub>4</sub> and KH<sub>2</sub>PO<sub>4</sub> salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the <em>B. subtilis</em> biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110485"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141022924000929/pdfft?md5=407aeace407d0e7ef745e4781151fc3c&pid=1-s2.0-S0141022924000929-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms\",\"authors\":\"Neda Eghtesadi , Kayode Olaifa , Tri T. Pham , Vito Capriati , Obinna M. Ajunwa , Enrico Marsili\",\"doi\":\"10.1016/j.enzmictec.2024.110485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gram-positive <em>Bacillus subtilis</em> is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in <em>B. subtilis</em> biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in <em>B. subtilis</em>. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose <em>B. subtilis</em> to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol<sup>−1</sup>) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH<sub>2</sub>PO<sub>4</sub> and KH<sub>2</sub>PO<sub>4</sub> salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the <em>B. subtilis</em> biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"180 \",\"pages\":\"Article 110485\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000929/pdfft?md5=407aeace407d0e7ef745e4781151fc3c&pid=1-s2.0-S0141022924000929-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000929\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000929","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms
Gram-positive Bacillus subtilis is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in B. subtilis biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in B. subtilis. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose B. subtilis to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol−1) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH2PO4 and KH2PO4 salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the B. subtilis biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.