废锂离子电池阴极回收的环境影响分析

IF 1.3 Q4 ENGINEERING, ENVIRONMENTAL
Xiaodong Sun, Vitalii Ishchenko
{"title":"废锂离子电池阴极回收的环境影响分析","authors":"Xiaodong Sun, Vitalii Ishchenko","doi":"10.12911/22998993/189187","DOIUrl":null,"url":null,"abstract":"This study introduces the current status of recycling technology for waste lithium-ion batteries, with a focus on the environmental impact during the recycling process of waste lithium-ion battery cathode materials. Composition of lithium-ion battery was analyzed in order to estimate which components are potentially dangerous to the environment. Heavy metals are main pollutants and change the pH of the environment; also, organic solvent actively reacts with oxidants and reducing agents in the environment. Other parts of waste battery mainly impact an air during the combustion or thermal decomposition generating toxic lithium, cobalt oxides, other gases. Sources of air, water, noise pollution, solid waste, and toxic chemicals generated in the recycling process were identified. Air pollutants generated at every stage of the process of positive electrode materials recycling include dust, acidic gases, and organic gases. The wastewater is generated mainly from the discharge pretreatment and cathode recovery processes (leaching and extraction). Although the wastewater volume is relatively small, its composition is complex, poorly biochemical and toxic (lithium compounds, organic solvents, etc.). In the dismantling process, plastic connectors, circuit boards, high-voltage wiring, powders, collectors and pool electrode material casings are generated as solid waste. Corresponding pollution prevention and control measures are suggested to prevent environmental pollution during the recycling process of waste lithium-ion battery cathode materials.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Impact Analysis of Waste Lithium-Ion Battery Cathode Recycling\",\"authors\":\"Xiaodong Sun, Vitalii Ishchenko\",\"doi\":\"10.12911/22998993/189187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces the current status of recycling technology for waste lithium-ion batteries, with a focus on the environmental impact during the recycling process of waste lithium-ion battery cathode materials. Composition of lithium-ion battery was analyzed in order to estimate which components are potentially dangerous to the environment. Heavy metals are main pollutants and change the pH of the environment; also, organic solvent actively reacts with oxidants and reducing agents in the environment. Other parts of waste battery mainly impact an air during the combustion or thermal decomposition generating toxic lithium, cobalt oxides, other gases. Sources of air, water, noise pollution, solid waste, and toxic chemicals generated in the recycling process were identified. Air pollutants generated at every stage of the process of positive electrode materials recycling include dust, acidic gases, and organic gases. The wastewater is generated mainly from the discharge pretreatment and cathode recovery processes (leaching and extraction). Although the wastewater volume is relatively small, its composition is complex, poorly biochemical and toxic (lithium compounds, organic solvents, etc.). In the dismantling process, plastic connectors, circuit boards, high-voltage wiring, powders, collectors and pool electrode material casings are generated as solid waste. Corresponding pollution prevention and control measures are suggested to prevent environmental pollution during the recycling process of waste lithium-ion battery cathode materials.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/189187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/189187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了废旧锂离子电池回收技术的现状,重点关注废旧锂离子电池正极材料回收过程中对环境的影响。对锂离子电池的成分进行了分析,以估计哪些成分对环境有潜在危害。重金属是主要污染物,会改变环境的 pH 值;此外,有机溶剂会与环境中的氧化剂和还原剂发生积极反应。废电池的其他部分主要在燃烧或热分解过程中对空气产生影响,产生有毒的锂、钴氧化物和其他气体。确定了回收过程中产生的空气、水、噪音污染源、固体废物和有毒化学品。在正极材料回收过程的各个阶段产生的空气污染物包括粉尘、酸性气体和有机气体。废水主要产生于排放预处理和阴极回收过程(浸出和萃取)。虽然废水量相对较小,但其成分复杂、可生化性差、毒性大(锂化合物、有机溶剂等)。在拆解过程中,会产生塑料连接器、电路板、高压线、粉末、收集器和池电极材料外壳等固体废物。为防止废弃锂离子电池正极材料回收过程中对环境造成污染,提出了相应的污染防治措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Impact Analysis of Waste Lithium-Ion Battery Cathode Recycling
This study introduces the current status of recycling technology for waste lithium-ion batteries, with a focus on the environmental impact during the recycling process of waste lithium-ion battery cathode materials. Composition of lithium-ion battery was analyzed in order to estimate which components are potentially dangerous to the environment. Heavy metals are main pollutants and change the pH of the environment; also, organic solvent actively reacts with oxidants and reducing agents in the environment. Other parts of waste battery mainly impact an air during the combustion or thermal decomposition generating toxic lithium, cobalt oxides, other gases. Sources of air, water, noise pollution, solid waste, and toxic chemicals generated in the recycling process were identified. Air pollutants generated at every stage of the process of positive electrode materials recycling include dust, acidic gases, and organic gases. The wastewater is generated mainly from the discharge pretreatment and cathode recovery processes (leaching and extraction). Although the wastewater volume is relatively small, its composition is complex, poorly biochemical and toxic (lithium compounds, organic solvents, etc.). In the dismantling process, plastic connectors, circuit boards, high-voltage wiring, powders, collectors and pool electrode material casings are generated as solid waste. Corresponding pollution prevention and control measures are suggested to prevent environmental pollution during the recycling process of waste lithium-ion battery cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ecological Engineering
Journal of Ecological Engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
2.60
自引率
15.40%
发文量
379
审稿时长
8 weeks
期刊介绍: - Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信