优化数据中心应用中的露点蒸发冷却器

W. C. Yan, C J Yang, Y L Liu, L W Jin, X Cui, X. Z. Meng
{"title":"优化数据中心应用中的露点蒸发冷却器","authors":"W. C. Yan, C J Yang, Y L Liu, L W Jin, X Cui, X. Z. Meng","doi":"10.1088/1755-1315/1372/1/012090","DOIUrl":null,"url":null,"abstract":"\n The escalating energy consumption of data centers has led to a pressing need for energy-efficient cooling solutions. This paper presents a countercurrent dew point evaporative cooler (DPEC) for data center refrigeration. We developed and experimentally validated a numerical model for DPEC, then formulated regression models using the response surface method. These models link eight key design factors, including geometrical and operational factors, to three performance indices: cooling capacity per unit volume, coefficient of performance, and outlet primary air temperature. We assessed the extent of factor influence on these indices. By using these regression models as objective functions, we used the genetic algorithm for design optimization under two climatic conditions, resulting in various optimal parameter combinations. Our findings highlight the strong predictive accuracy of these models. In comparison to the original design, the optimal design achieved an improvement of 104.8%, an increase of 23.9%, and a reduction of 13.8% in the three indices.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"181 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing a dew point evaporative cooler in data center applications\",\"authors\":\"W. C. Yan, C J Yang, Y L Liu, L W Jin, X Cui, X. Z. Meng\",\"doi\":\"10.1088/1755-1315/1372/1/012090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The escalating energy consumption of data centers has led to a pressing need for energy-efficient cooling solutions. This paper presents a countercurrent dew point evaporative cooler (DPEC) for data center refrigeration. We developed and experimentally validated a numerical model for DPEC, then formulated regression models using the response surface method. These models link eight key design factors, including geometrical and operational factors, to three performance indices: cooling capacity per unit volume, coefficient of performance, and outlet primary air temperature. We assessed the extent of factor influence on these indices. By using these regression models as objective functions, we used the genetic algorithm for design optimization under two climatic conditions, resulting in various optimal parameter combinations. Our findings highlight the strong predictive accuracy of these models. In comparison to the original design, the optimal design achieved an improvement of 104.8%, an increase of 23.9%, and a reduction of 13.8% in the three indices.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"181 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据中心能耗的不断攀升导致了对高能效冷却解决方案的迫切需求。本文介绍了一种用于数据中心制冷的逆流露点蒸发冷却器(DPEC)。我们开发并通过实验验证了 DPEC 的数值模型,然后使用响应面法建立了回归模型。这些模型将八个关键设计因素(包括几何和运行因素)与单位体积制冷量、性能系数和出口一次空气温度这三个性能指标联系起来。我们评估了因素对这些指数的影响程度。将这些回归模型作为目标函数,我们使用遗传算法在两种气候条件下进行了优化设计,得出了各种最佳参数组合。我们的研究结果表明,这些模型具有很强的预测准确性。与原始设计相比,优化设计使三个指数分别提高了 104.8%、23.9% 和 13.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing a dew point evaporative cooler in data center applications
The escalating energy consumption of data centers has led to a pressing need for energy-efficient cooling solutions. This paper presents a countercurrent dew point evaporative cooler (DPEC) for data center refrigeration. We developed and experimentally validated a numerical model for DPEC, then formulated regression models using the response surface method. These models link eight key design factors, including geometrical and operational factors, to three performance indices: cooling capacity per unit volume, coefficient of performance, and outlet primary air temperature. We assessed the extent of factor influence on these indices. By using these regression models as objective functions, we used the genetic algorithm for design optimization under two climatic conditions, resulting in various optimal parameter combinations. Our findings highlight the strong predictive accuracy of these models. In comparison to the original design, the optimal design achieved an improvement of 104.8%, an increase of 23.9%, and a reduction of 13.8% in the three indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信