{"title":"二氧化氯可替代酸化和氯化法对奶牛饮用水进行化学消毒","authors":"","doi":"10.1016/j.animal.2024.101244","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative water disinfectants to chlorination need to be identified because its effectiveness is limited by water pH and potentially carcinogen by−products resulted from chlorination and organic compound reaction. The first study aimed to evaluate the effect of different drinking water chemical disinfection treatments on water quality, its potential hazard effects on animal health, water and feed consumption, and apparent total tract digestibility in dairy beef bulls fed high-concentrate diets. For 224 days, 24 Holstein bulls (176 ± 16.3 kg BW, and 149 ± 5.8 days of age) were individually assigned to one of four treatments with different drinking water chemical disinfectants: without disinfection (<strong>CTR</strong>); acidification and chlorination (<strong>ACCHL</strong>; 0.65 mL/L H<sub>3</sub>PO<sub>4</sub> and 0.14 mL/L NaClO 15%); hydrogen peroxide (<strong>PER</strong>; 0.15 mL/L); and chlorine dioxide (<strong>DIO</strong>; 2.50 mL/L). Data were analysed with a mixed-effects model. Treatments affected the chemical characteristics of the water: in ACCHL, pH was 6.60 and free residual chlorine was 0.75 mg/L; in PER, H<sub>2</sub>O<sub>2</sub> was 10.6 mg/L; and in DIO, ClO<sub>2</sub> was 0.52 mg/L. Water physicochemical quality parameters in all treatments were below maximal thresholds established for safe water consumption by the Water Safety Royal Decree (RD 140/2003). In addition, the total coliform count of treated waters was reduced (<em>P</em> = 0.01) compared with CTR; moreover, ACCHL and DIO treatments were more effective in reducing total coliform count than PER. Dry matter intake tended (<em>P</em> = 0.07) to increase in DIO compared with CTR. Treatments did not affect blood parameters nor apparent total tract digestibility. The second study aimed to evaluate the potential benefit on animal performance of two drinking water disinfectants under commercial conditions in dairy beef crossbred Holstein bulls fed high-concentrate diets. Ninety-six animals (307 ± 4.4 kg BW, and 224 ± 1.8 days of age) were allocated to six pens for 140 days and assigned to one of two treatments: ACCHL, most common water disinfectant, and DIO. Data were analysed with a mixed-effects model. Water total coliform count and water consumption were similar between treatments. Concentrate intake was greater (<em>P</em> = 0.02) in ACCHL for the last 14 study days. Growth performance and carcass quality were similar between treatments. In summary, acidification and chlorination, H<sub>2</sub>O<sub>2</sub>, and ClO<sub>2</sub> as drinking water disinfectants in dairy beef bulls had good disinfecting activity without detrimental effects on health and nutrient digestibility, and performance.</p></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751731124001757/pdfft?md5=75ce647997e160db7969d42548228fa1&pid=1-s2.0-S1751731124001757-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chlorine dioxide may be an alternative to acidification and chlorination for drinking water chemical disinfection in dairy beef bulls\",\"authors\":\"\",\"doi\":\"10.1016/j.animal.2024.101244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alternative water disinfectants to chlorination need to be identified because its effectiveness is limited by water pH and potentially carcinogen by−products resulted from chlorination and organic compound reaction. The first study aimed to evaluate the effect of different drinking water chemical disinfection treatments on water quality, its potential hazard effects on animal health, water and feed consumption, and apparent total tract digestibility in dairy beef bulls fed high-concentrate diets. For 224 days, 24 Holstein bulls (176 ± 16.3 kg BW, and 149 ± 5.8 days of age) were individually assigned to one of four treatments with different drinking water chemical disinfectants: without disinfection (<strong>CTR</strong>); acidification and chlorination (<strong>ACCHL</strong>; 0.65 mL/L H<sub>3</sub>PO<sub>4</sub> and 0.14 mL/L NaClO 15%); hydrogen peroxide (<strong>PER</strong>; 0.15 mL/L); and chlorine dioxide (<strong>DIO</strong>; 2.50 mL/L). Data were analysed with a mixed-effects model. Treatments affected the chemical characteristics of the water: in ACCHL, pH was 6.60 and free residual chlorine was 0.75 mg/L; in PER, H<sub>2</sub>O<sub>2</sub> was 10.6 mg/L; and in DIO, ClO<sub>2</sub> was 0.52 mg/L. Water physicochemical quality parameters in all treatments were below maximal thresholds established for safe water consumption by the Water Safety Royal Decree (RD 140/2003). In addition, the total coliform count of treated waters was reduced (<em>P</em> = 0.01) compared with CTR; moreover, ACCHL and DIO treatments were more effective in reducing total coliform count than PER. Dry matter intake tended (<em>P</em> = 0.07) to increase in DIO compared with CTR. Treatments did not affect blood parameters nor apparent total tract digestibility. The second study aimed to evaluate the potential benefit on animal performance of two drinking water disinfectants under commercial conditions in dairy beef crossbred Holstein bulls fed high-concentrate diets. Ninety-six animals (307 ± 4.4 kg BW, and 224 ± 1.8 days of age) were allocated to six pens for 140 days and assigned to one of two treatments: ACCHL, most common water disinfectant, and DIO. Data were analysed with a mixed-effects model. Water total coliform count and water consumption were similar between treatments. Concentrate intake was greater (<em>P</em> = 0.02) in ACCHL for the last 14 study days. Growth performance and carcass quality were similar between treatments. In summary, acidification and chlorination, H<sub>2</sub>O<sub>2</sub>, and ClO<sub>2</sub> as drinking water disinfectants in dairy beef bulls had good disinfecting activity without detrimental effects on health and nutrient digestibility, and performance.</p></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751731124001757/pdfft?md5=75ce647997e160db7969d42548228fa1&pid=1-s2.0-S1751731124001757-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751731124001757\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124001757","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Chlorine dioxide may be an alternative to acidification and chlorination for drinking water chemical disinfection in dairy beef bulls
Alternative water disinfectants to chlorination need to be identified because its effectiveness is limited by water pH and potentially carcinogen by−products resulted from chlorination and organic compound reaction. The first study aimed to evaluate the effect of different drinking water chemical disinfection treatments on water quality, its potential hazard effects on animal health, water and feed consumption, and apparent total tract digestibility in dairy beef bulls fed high-concentrate diets. For 224 days, 24 Holstein bulls (176 ± 16.3 kg BW, and 149 ± 5.8 days of age) were individually assigned to one of four treatments with different drinking water chemical disinfectants: without disinfection (CTR); acidification and chlorination (ACCHL; 0.65 mL/L H3PO4 and 0.14 mL/L NaClO 15%); hydrogen peroxide (PER; 0.15 mL/L); and chlorine dioxide (DIO; 2.50 mL/L). Data were analysed with a mixed-effects model. Treatments affected the chemical characteristics of the water: in ACCHL, pH was 6.60 and free residual chlorine was 0.75 mg/L; in PER, H2O2 was 10.6 mg/L; and in DIO, ClO2 was 0.52 mg/L. Water physicochemical quality parameters in all treatments were below maximal thresholds established for safe water consumption by the Water Safety Royal Decree (RD 140/2003). In addition, the total coliform count of treated waters was reduced (P = 0.01) compared with CTR; moreover, ACCHL and DIO treatments were more effective in reducing total coliform count than PER. Dry matter intake tended (P = 0.07) to increase in DIO compared with CTR. Treatments did not affect blood parameters nor apparent total tract digestibility. The second study aimed to evaluate the potential benefit on animal performance of two drinking water disinfectants under commercial conditions in dairy beef crossbred Holstein bulls fed high-concentrate diets. Ninety-six animals (307 ± 4.4 kg BW, and 224 ± 1.8 days of age) were allocated to six pens for 140 days and assigned to one of two treatments: ACCHL, most common water disinfectant, and DIO. Data were analysed with a mixed-effects model. Water total coliform count and water consumption were similar between treatments. Concentrate intake was greater (P = 0.02) in ACCHL for the last 14 study days. Growth performance and carcass quality were similar between treatments. In summary, acidification and chlorination, H2O2, and ClO2 as drinking water disinfectants in dairy beef bulls had good disinfecting activity without detrimental effects on health and nutrient digestibility, and performance.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.