基于 K-(Nearest Neightbor)的陆军 NPS 75 4x4 运输车轴承损坏检测工具的设计

Ferry Dahruyatsyah, Gatut Yulisusianto, Ade Setiawan, Dekki Widiatomoko
{"title":"基于 K-(Nearest Neightbor)的陆军 NPS 75 4x4 运输车轴承损坏检测工具的设计","authors":"Ferry Dahruyatsyah, Gatut Yulisusianto, Ade Setiawan, Dekki Widiatomoko","doi":"10.47467/reslaj.v6i7.2164","DOIUrl":null,"url":null,"abstract":"The Indonesian National Army (TNI) is a key element in maintaining national defense. However, challenges in the TNI's performance arise due to the need to modernize the main defense system equipment (alutsista) especially related to the condition of the NPS75 4x4 transport vehicle. One of the problems that often occurs is damage to wheel bearings, which can threaten personnel safety. Traditional methods such as listening to the sound of the engine and carrying out a physical inspection have been used before, but with the development of electronic technology, automatic devices can be created that monitor the condition of vehicle bearings using vibration detection. In this research, we propose the use of the Wemos D1 Mini which is connected to the driver's mobile phone via a WiFi network. This device uses the K-Nearest Neighbor (KNN) method to classify damage to bearings based on learning data. The aim is to assist in automatically detecting and classifying bearing damage categories on NPS75 4x4 transport vehicles, so that timely and targeted maintenance actions can be taken.","PeriodicalId":517122,"journal":{"name":"Reslaj: Religion Education Social Laa Roiba Journal","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rancang Bangun Alat Pendeteksi Kerusakan pada Bearing Kendaraan Angkut NPS 75 4x4 milik TNI Angkatan Darat Berbasis K- (Nearest Neightbor)\",\"authors\":\"Ferry Dahruyatsyah, Gatut Yulisusianto, Ade Setiawan, Dekki Widiatomoko\",\"doi\":\"10.47467/reslaj.v6i7.2164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Indonesian National Army (TNI) is a key element in maintaining national defense. However, challenges in the TNI's performance arise due to the need to modernize the main defense system equipment (alutsista) especially related to the condition of the NPS75 4x4 transport vehicle. One of the problems that often occurs is damage to wheel bearings, which can threaten personnel safety. Traditional methods such as listening to the sound of the engine and carrying out a physical inspection have been used before, but with the development of electronic technology, automatic devices can be created that monitor the condition of vehicle bearings using vibration detection. In this research, we propose the use of the Wemos D1 Mini which is connected to the driver's mobile phone via a WiFi network. This device uses the K-Nearest Neighbor (KNN) method to classify damage to bearings based on learning data. The aim is to assist in automatically detecting and classifying bearing damage categories on NPS75 4x4 transport vehicles, so that timely and targeted maintenance actions can be taken.\",\"PeriodicalId\":517122,\"journal\":{\"name\":\"Reslaj: Religion Education Social Laa Roiba Journal\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reslaj: Religion Education Social Laa Roiba Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47467/reslaj.v6i7.2164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reslaj: Religion Education Social Laa Roiba Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47467/reslaj.v6i7.2164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚国民军(TNI)是维护国防的关键因素。然而,由于需要对主要防御系统设备(alutsista)进行现代化改造,印尼国民军的表现面临挑战,特别是与 NPS75 4x4 运输车的状况有关的挑战。经常出现的问题之一是轮毂轴承损坏,这会威胁到人员安全。以前曾使用过听发动机声音和进行物理检查等传统方法,但随着电子技术的发展,可以制造出利用振动检测来监控车辆轴承状况的自动装置。在这项研究中,我们建议使用 Wemos D1 Mini,它通过 WiFi 网络与驾驶员的手机相连。该设备使用 K-Nearest Neighbor (KNN) 方法,根据学习数据对轴承损坏情况进行分类。其目的是协助自动检测和分类 NPS75 4x4 运输车辆的轴承损坏类别,以便及时采取有针对性的维护行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rancang Bangun Alat Pendeteksi Kerusakan pada Bearing Kendaraan Angkut NPS 75 4x4 milik TNI Angkatan Darat Berbasis K- (Nearest Neightbor)
The Indonesian National Army (TNI) is a key element in maintaining national defense. However, challenges in the TNI's performance arise due to the need to modernize the main defense system equipment (alutsista) especially related to the condition of the NPS75 4x4 transport vehicle. One of the problems that often occurs is damage to wheel bearings, which can threaten personnel safety. Traditional methods such as listening to the sound of the engine and carrying out a physical inspection have been used before, but with the development of electronic technology, automatic devices can be created that monitor the condition of vehicle bearings using vibration detection. In this research, we propose the use of the Wemos D1 Mini which is connected to the driver's mobile phone via a WiFi network. This device uses the K-Nearest Neighbor (KNN) method to classify damage to bearings based on learning data. The aim is to assist in automatically detecting and classifying bearing damage categories on NPS75 4x4 transport vehicles, so that timely and targeted maintenance actions can be taken.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信