{"title":"受白粉病感染的大麦、小麦和 Brachypodium distachyon 叶片中 RNase 活性和两种 RNase 基因表达的变化","authors":"C. Juhász, G. Gullner, Balázs Barna","doi":"10.1556/038.2024.00208","DOIUrl":null,"url":null,"abstract":"Changes in RNase activities were investigated in extracts from barley near isogenic lines without or with various powdery mildew resistance genes and were compared to changes in wheat and Brachypodium distachyon leaves after powdery mildew infections. In barley, the compatible interaction with powdery mildew induced the highest increase in RNase activity as measured spectrophotometrically. The incompatible interaction that accompanied with hypersensitive reaction in Mla leaves gave less increase, whereas incompatible interactions in Mlg and mlo barley leaves without visible symptoms gave the least increase of RNase activity. In wheat, the largest RNase activity was found in leaves infected with the compatible wheat powdery mildew or wheat stem and leaf rusts. RNase activity in B. distachyon was higher than that in healthy wheat and especially barley leaves. The electrophoretic RNase enzyme activity patterns were different in barley, wheat and B. distachyon plants, but showed similar activities as determined spectrophotometrically. Barley genes encoding endonuclease 2 and ribonuclease 3-like protein X3 showed the highest expression in the compatible barley - barley powdery mildew interaction as measured by RT-qPCR. This correlated with RNase activities in leaf extracts suggesting that RNases in barley and wheat may act as susceptibility factors of powdery mildew and rust diseases.","PeriodicalId":7136,"journal":{"name":"Acta Phytopathologica Et Entomologica Hungarica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in RNase activities and in expression of two RNase genes in powdery mildew infected barley, wheat and Brachypodium distachyon leaves\",\"authors\":\"C. Juhász, G. Gullner, Balázs Barna\",\"doi\":\"10.1556/038.2024.00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in RNase activities were investigated in extracts from barley near isogenic lines without or with various powdery mildew resistance genes and were compared to changes in wheat and Brachypodium distachyon leaves after powdery mildew infections. In barley, the compatible interaction with powdery mildew induced the highest increase in RNase activity as measured spectrophotometrically. The incompatible interaction that accompanied with hypersensitive reaction in Mla leaves gave less increase, whereas incompatible interactions in Mlg and mlo barley leaves without visible symptoms gave the least increase of RNase activity. In wheat, the largest RNase activity was found in leaves infected with the compatible wheat powdery mildew or wheat stem and leaf rusts. RNase activity in B. distachyon was higher than that in healthy wheat and especially barley leaves. The electrophoretic RNase enzyme activity patterns were different in barley, wheat and B. distachyon plants, but showed similar activities as determined spectrophotometrically. Barley genes encoding endonuclease 2 and ribonuclease 3-like protein X3 showed the highest expression in the compatible barley - barley powdery mildew interaction as measured by RT-qPCR. This correlated with RNase activities in leaf extracts suggesting that RNases in barley and wheat may act as susceptibility factors of powdery mildew and rust diseases.\",\"PeriodicalId\":7136,\"journal\":{\"name\":\"Acta Phytopathologica Et Entomologica Hungarica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Phytopathologica Et Entomologica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/038.2024.00208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Phytopathologica Et Entomologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/038.2024.00208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Changes in RNase activities and in expression of two RNase genes in powdery mildew infected barley, wheat and Brachypodium distachyon leaves
Changes in RNase activities were investigated in extracts from barley near isogenic lines without or with various powdery mildew resistance genes and were compared to changes in wheat and Brachypodium distachyon leaves after powdery mildew infections. In barley, the compatible interaction with powdery mildew induced the highest increase in RNase activity as measured spectrophotometrically. The incompatible interaction that accompanied with hypersensitive reaction in Mla leaves gave less increase, whereas incompatible interactions in Mlg and mlo barley leaves without visible symptoms gave the least increase of RNase activity. In wheat, the largest RNase activity was found in leaves infected with the compatible wheat powdery mildew or wheat stem and leaf rusts. RNase activity in B. distachyon was higher than that in healthy wheat and especially barley leaves. The electrophoretic RNase enzyme activity patterns were different in barley, wheat and B. distachyon plants, but showed similar activities as determined spectrophotometrically. Barley genes encoding endonuclease 2 and ribonuclease 3-like protein X3 showed the highest expression in the compatible barley - barley powdery mildew interaction as measured by RT-qPCR. This correlated with RNase activities in leaf extracts suggesting that RNases in barley and wheat may act as susceptibility factors of powdery mildew and rust diseases.
期刊介绍:
The journal publishes papers on the infectious diseases of plants, damages caused by insects and deals with the basic aspects of chemical and biological protection. Within its field of interest additional topics such as resistance against plant diseases, and physiological, biochemical and molecular questions of plant resistance and susceptibility are also discussed. Publishes book reviews and advertisements.