ODL:面向智能物联网系统的机会性分布式学习

A. Abdellatif, Noor Khial, Menna Helmy, Amr Mohamed, A. Erbad, K. Shaban
{"title":"ODL:面向智能物联网系统的机会性分布式学习","authors":"A. Abdellatif, Noor Khial, Menna Helmy, Amr Mohamed, A. Erbad, K. Shaban","doi":"10.1109/IOTM.001.2300187","DOIUrl":null,"url":null,"abstract":"As we transition from centralized machine learning to distributed learning, new practices can significantly enhance intelligent Internet of Things (IoT) systems. This article introduces the concept of Opportunistic Distributed Learning (ODL), a general framework that enables any node in a network to initiates learning tasks by leveraging local, unused distributed resources collaboratively. ODL, facilitated by edge intelligence, promotes collective responsibility, pervasive and flexible distributed learning, allowing participating nodes to freely move, group, and regroup based on their conditions and benefits. The article discusses key research challenges of ODL in intelligent IoT systems, presents the ODL framework, proposes a reputation-based node selection scheme, and highlights the benefits and future research directions of the ODL system.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"39 1","pages":"92-99"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ODL: Opportunistic Distributed Learning for Intelligent IoT Systems\",\"authors\":\"A. Abdellatif, Noor Khial, Menna Helmy, Amr Mohamed, A. Erbad, K. Shaban\",\"doi\":\"10.1109/IOTM.001.2300187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we transition from centralized machine learning to distributed learning, new practices can significantly enhance intelligent Internet of Things (IoT) systems. This article introduces the concept of Opportunistic Distributed Learning (ODL), a general framework that enables any node in a network to initiates learning tasks by leveraging local, unused distributed resources collaboratively. ODL, facilitated by edge intelligence, promotes collective responsibility, pervasive and flexible distributed learning, allowing participating nodes to freely move, group, and regroup based on their conditions and benefits. The article discusses key research challenges of ODL in intelligent IoT systems, presents the ODL framework, proposes a reputation-based node selection scheme, and highlights the benefits and future research directions of the ODL system.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"39 1\",\"pages\":\"92-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2300187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着我们从集中式机器学习过渡到分布式学习,新的实践可以显著增强智能物联网(IoT)系统。本文介绍了 "机会分布式学习"(ODL)的概念,这是一个通用框架,可使网络中的任何节点通过协作利用本地闲置分布式资源启动学习任务。在边缘智能的推动下,ODL 可促进集体责任、普及和灵活的分布式学习,允许参与节点根据自身条件和利益自由移动、分组和重组。文章讨论了智能物联网系统中 ODL 的关键研究挑战,介绍了 ODL 框架,提出了基于声誉的节点选择方案,并强调了 ODL 系统的优势和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ODL: Opportunistic Distributed Learning for Intelligent IoT Systems
As we transition from centralized machine learning to distributed learning, new practices can significantly enhance intelligent Internet of Things (IoT) systems. This article introduces the concept of Opportunistic Distributed Learning (ODL), a general framework that enables any node in a network to initiates learning tasks by leveraging local, unused distributed resources collaboratively. ODL, facilitated by edge intelligence, promotes collective responsibility, pervasive and flexible distributed learning, allowing participating nodes to freely move, group, and regroup based on their conditions and benefits. The article discusses key research challenges of ODL in intelligent IoT systems, presents the ODL framework, proposes a reputation-based node selection scheme, and highlights the benefits and future research directions of the ODL system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信