关于超水平条件密度集和多元量子回归

IF 9.9 3区 经济学 Q1 ECONOMICS
Annika Camehl, Dennis Fok, Kathrin Gruber
{"title":"关于超水平条件密度集和多元量子回归","authors":"Annika Camehl,&nbsp;Dennis Fok,&nbsp;Kathrin Gruber","doi":"10.1016/j.jeconom.2024.105807","DOIUrl":null,"url":null,"abstract":"<div><div>Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105807"},"PeriodicalIF":9.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On superlevel sets of conditional densities and multivariate quantile regression\",\"authors\":\"Annika Camehl,&nbsp;Dennis Fok,&nbsp;Kathrin Gruber\",\"doi\":\"10.1016/j.jeconom.2024.105807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105807\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001532\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001532","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

一些常见的多元分位数建议不能充分控制概率内容,而另一些建议则不能总是准确地反映概率质量的集中。我们建议将条件多元密度的超水平集作为当前多元分位数定义的替代方案。因此,超水平集是条件变量的函数,就像分位数回归一样。我们证明了条件超水平集具有良好的数学和直观特征,并支持清晰的概率解释。我们从一个(过拟合的)多元高斯混合模型中导出了条件密度或边际密度的超水平集。这种方法保证了逻辑上一致(即非交叉)的条件超水平集,也允许我们获得更多传统的单变量分位数。我们证明了具有相关性、异方差或不对称分布的真实条件单变量分位数的恢复,并将我们的方法应用于单变量和多变量设置中对家庭支出的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On superlevel sets of conditional densities and multivariate quantile regression
Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信