合成孔径雷达中的 CFAR 目标探测器

A. A. Monakov
{"title":"合成孔径雷达中的 CFAR 目标探测器","authors":"A. A. Monakov","doi":"10.32603/1993-8985-2024-27-3-52-67","DOIUrl":null,"url":null,"abstract":"Introduction. Constant false alarm rate (CFAR) detectors have found application in synthetic aperture radar (SAR) systems. The operating principle of a classic cell averaging detector (CA-CFAR detector) is based on comparing the decision statistics in the test resolution element with an adaptive threshold, which is calculated from signals in the reference cells. The decision statistic is an estimate of the signal power. Therefore, target signal detection is based on the brightness contrast of the test and reference resolution cells. Such a detector is optimal provided that the noise background is homogeneous. In cases where the background homogeneity is violated, the quality of detection deteriorates. There are several known methods for improving the quality of detection (GO-CFAR, SO-CFAR, OS-CFAR, etc.). However, the precise principle of detection by brightness contrast in such CFAR detectors remains unchanged.Aim. To synthesize a CFAR detector that uses not only the brightness contrast between the test and reference resolution cells, but also the spectral differences of the signals.Materials and methods. The proposed CFAR detector uses estimates of the algebraic moments of the power spectral density of signals in range cells, based on which three decision statistics are calculated containing information about the power, the position of the energy center, and the width of the signal spectrum. The decision about the presence of a target in the test cell is carried out according to the 2/3 rule (2 threshold overshoots out of 3 comparisons).Results. A comparison of the proposed detector with the SO-CFAR detector, performed by computer simulation, showed that, under a signal-to-clutter ratio of -6 dB and a false alarm probability of 10-4, the detection probability of the proposed detector was 0.933 versus 0.708 for the SO-CFAR detector.Conclusion. The article proposes a three-parameter CFAR detector for a synthetic aperture radar system, in which the decision on the presence of a target in the test cell is made via estimation of the first three algebraic moments of the signal spectrum. The synthesized detection algorithm can also be used when detecting moving targets in SAR.","PeriodicalId":217555,"journal":{"name":"Journal of the Russian Universities. Radioelectronics","volume":"8 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFAR Target Detector in Synthetic Aperture Radar\",\"authors\":\"A. A. Monakov\",\"doi\":\"10.32603/1993-8985-2024-27-3-52-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Constant false alarm rate (CFAR) detectors have found application in synthetic aperture radar (SAR) systems. The operating principle of a classic cell averaging detector (CA-CFAR detector) is based on comparing the decision statistics in the test resolution element with an adaptive threshold, which is calculated from signals in the reference cells. The decision statistic is an estimate of the signal power. Therefore, target signal detection is based on the brightness contrast of the test and reference resolution cells. Such a detector is optimal provided that the noise background is homogeneous. In cases where the background homogeneity is violated, the quality of detection deteriorates. There are several known methods for improving the quality of detection (GO-CFAR, SO-CFAR, OS-CFAR, etc.). However, the precise principle of detection by brightness contrast in such CFAR detectors remains unchanged.Aim. To synthesize a CFAR detector that uses not only the brightness contrast between the test and reference resolution cells, but also the spectral differences of the signals.Materials and methods. The proposed CFAR detector uses estimates of the algebraic moments of the power spectral density of signals in range cells, based on which three decision statistics are calculated containing information about the power, the position of the energy center, and the width of the signal spectrum. The decision about the presence of a target in the test cell is carried out according to the 2/3 rule (2 threshold overshoots out of 3 comparisons).Results. A comparison of the proposed detector with the SO-CFAR detector, performed by computer simulation, showed that, under a signal-to-clutter ratio of -6 dB and a false alarm probability of 10-4, the detection probability of the proposed detector was 0.933 versus 0.708 for the SO-CFAR detector.Conclusion. The article proposes a three-parameter CFAR detector for a synthetic aperture radar system, in which the decision on the presence of a target in the test cell is made via estimation of the first three algebraic moments of the signal spectrum. The synthesized detection algorithm can also be used when detecting moving targets in SAR.\",\"PeriodicalId\":217555,\"journal\":{\"name\":\"Journal of the Russian Universities. Radioelectronics\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Russian Universities. Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/1993-8985-2024-27-3-52-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Russian Universities. Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/1993-8985-2024-27-3-52-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引言恒误报率(CFAR)探测器已在合成孔径雷达(SAR)系统中得到应用。经典单元平均检测器(CA-CFAR 检测器)的工作原理是将测试分辨率元件中的判定统计量与自适应阈值进行比较,而自适应阈值是根据参考单元中的信号计算得出的。判定统计量是对信号功率的估计。因此,目标信号检测是基于测试和参考分辨单元的亮度对比。这种检测器在噪声背景均匀的情况下是最佳的。如果背景不均匀,检测质量就会下降。有几种已知的提高检测质量的方法(GO-CFAR、SO-CFAR、OS-CFAR 等)。然而,这些 CFAR 检测器通过亮度对比进行检测的精确原理却没有改变。合成一种 CFAR 检测器,它不仅能利用测试和参考分辨率单元之间的亮度对比,还能利用信号的光谱差异。拟议的 CFAR 检测器使用测距单元中信号功率谱密度代数矩的估计值,在此基础上计算出三个决策统计量,其中包含功率、能量中心位置和信号谱宽度的信息。根据 2/3 规则(3 次比较中出现 2 次阈值过冲)来判定测试单元中是否存在目标。通过计算机模拟对所提出的检测器和 SO-CFAR 检测器进行了比较,结果表明,在信噪比为 -6 dB 和误报概率为 10-4 的条件下,所提出的检测器的检测概率为 0.933,而 SO-CFAR 检测器的检测概率为 0.708。文章为合成孔径雷达系统提出了一种三参数 CFAR 探测器,通过估计信号频谱的前三个代数矩来判断测试单元中是否存在目标。合成探测算法也可用于探测合成孔径雷达中的移动目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFAR Target Detector in Synthetic Aperture Radar
Introduction. Constant false alarm rate (CFAR) detectors have found application in synthetic aperture radar (SAR) systems. The operating principle of a classic cell averaging detector (CA-CFAR detector) is based on comparing the decision statistics in the test resolution element with an adaptive threshold, which is calculated from signals in the reference cells. The decision statistic is an estimate of the signal power. Therefore, target signal detection is based on the brightness contrast of the test and reference resolution cells. Such a detector is optimal provided that the noise background is homogeneous. In cases where the background homogeneity is violated, the quality of detection deteriorates. There are several known methods for improving the quality of detection (GO-CFAR, SO-CFAR, OS-CFAR, etc.). However, the precise principle of detection by brightness contrast in such CFAR detectors remains unchanged.Aim. To synthesize a CFAR detector that uses not only the brightness contrast between the test and reference resolution cells, but also the spectral differences of the signals.Materials and methods. The proposed CFAR detector uses estimates of the algebraic moments of the power spectral density of signals in range cells, based on which three decision statistics are calculated containing information about the power, the position of the energy center, and the width of the signal spectrum. The decision about the presence of a target in the test cell is carried out according to the 2/3 rule (2 threshold overshoots out of 3 comparisons).Results. A comparison of the proposed detector with the SO-CFAR detector, performed by computer simulation, showed that, under a signal-to-clutter ratio of -6 dB and a false alarm probability of 10-4, the detection probability of the proposed detector was 0.933 versus 0.708 for the SO-CFAR detector.Conclusion. The article proposes a three-parameter CFAR detector for a synthetic aperture radar system, in which the decision on the presence of a target in the test cell is made via estimation of the first three algebraic moments of the signal spectrum. The synthesized detection algorithm can also be used when detecting moving targets in SAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信