{"title":"地下土壤层比电导率和水分的远程测量方法","authors":"","doi":"10.1016/j.atech.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the research is to develop a radar method for determining the physical and chemical parameters of subsurface soil horizons, providing rapid determination of moisture and specific conductivity in the area of the plant root system. The proposed method is based on a set of Fresnel equations which describe reflection of electromagnetic waves from the interface between dielectric media in vertical and horizontal polarization of the probing signal. For the practical implementation of the method, it is proposed to use two unmanned aerial vehicles that form a bistatic radar system which irradiates the Earth's surface obliquely in order to create the Brewster's effect and increase the fraction of the radio signal reflected from subsurface horizons. The percentage of moisture and the specific conductivity of soil are calculated from the measured values of the imaginary part of the complex permittivity. The required accuracy of moisture and conductivity measurements is achieved by two-step calibration of the measuring device. The values of the moisture content and specific conductivity of soil obtained by radar at a frequency of 469 MHz are in good agreement with the results of measuring these parameters using the soil moisture meter TDR 150 Spectrum Technologies, Inc.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772375524001084/pdfft?md5=008e2aa2269764d8b7880c4f9aaad848&pid=1-s2.0-S2772375524001084-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Method for remote measurement of specific conductivity and moisture of subsurface soil horizons\",\"authors\":\"\",\"doi\":\"10.1016/j.atech.2024.100503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the research is to develop a radar method for determining the physical and chemical parameters of subsurface soil horizons, providing rapid determination of moisture and specific conductivity in the area of the plant root system. The proposed method is based on a set of Fresnel equations which describe reflection of electromagnetic waves from the interface between dielectric media in vertical and horizontal polarization of the probing signal. For the practical implementation of the method, it is proposed to use two unmanned aerial vehicles that form a bistatic radar system which irradiates the Earth's surface obliquely in order to create the Brewster's effect and increase the fraction of the radio signal reflected from subsurface horizons. The percentage of moisture and the specific conductivity of soil are calculated from the measured values of the imaginary part of the complex permittivity. The required accuracy of moisture and conductivity measurements is achieved by two-step calibration of the measuring device. The values of the moisture content and specific conductivity of soil obtained by radar at a frequency of 469 MHz are in good agreement with the results of measuring these parameters using the soil moisture meter TDR 150 Spectrum Technologies, Inc.</p></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772375524001084/pdfft?md5=008e2aa2269764d8b7880c4f9aaad848&pid=1-s2.0-S2772375524001084-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375524001084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524001084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
研究的目的是开发一种雷达方法,用于确定地下土壤层的物理和化学参数,快速测定植物根系区域的湿度和比电导率。所提出的方法基于一组菲涅尔方程,该方程描述了探测信号在垂直和水平极化时介质界面对电磁波的反射。在实际应用该方法时,建议使用两架无人飞行器组成双向雷达系统,斜向照射地球表面,以产生布儒斯特效应,增加从地下地层反射的无线电信号部分。根据复介电常数虚部的测量值计算出土壤的水分百分比和比电导率。湿度和电导率测量所需的精度是通过测量设备的两步校准来实现的。通过频率为 469 MHz 的雷达获得的土壤含水量和比电导率值与使用土壤湿度仪 TDR 150 Spectrum Technologies, Inc.
Method for remote measurement of specific conductivity and moisture of subsurface soil horizons
The aim of the research is to develop a radar method for determining the physical and chemical parameters of subsurface soil horizons, providing rapid determination of moisture and specific conductivity in the area of the plant root system. The proposed method is based on a set of Fresnel equations which describe reflection of electromagnetic waves from the interface between dielectric media in vertical and horizontal polarization of the probing signal. For the practical implementation of the method, it is proposed to use two unmanned aerial vehicles that form a bistatic radar system which irradiates the Earth's surface obliquely in order to create the Brewster's effect and increase the fraction of the radio signal reflected from subsurface horizons. The percentage of moisture and the specific conductivity of soil are calculated from the measured values of the imaginary part of the complex permittivity. The required accuracy of moisture and conductivity measurements is achieved by two-step calibration of the measuring device. The values of the moisture content and specific conductivity of soil obtained by radar at a frequency of 469 MHz are in good agreement with the results of measuring these parameters using the soil moisture meter TDR 150 Spectrum Technologies, Inc.