MFIX-DEM 模拟双流化床系统中的气固流动动力学

R. K. Banik, H. J. Das
{"title":"MFIX-DEM 模拟双流化床系统中的气固流动动力学","authors":"R. K. Banik, H. J. Das","doi":"10.1088/1755-1315/1372/1/012100","DOIUrl":null,"url":null,"abstract":"\n To overcome the operational difficulties associated with bubbling and circulating fluidized bed gasifiers, a new gasification technology termed dual fluidized bed gasification (DFBG) has evolved. To strengthen the understanding of the gasification and combustion processes in the DFBG system, a thorough analysis of bed hydrodynamics is of paramount importance. Furthermore, the complexity of the hydrodynamics escalates while incorporating diverse fuels like biomass and coal, along with bed materials fluidized in a single reactor due to its nonlinearity and transience. As a result, the study of hydrodynamics in such a system is indispensable. The present study focuses on the discrete element model (DEM) simulation of the bed hydrodynamic behaviour within the gasifier of a DFBG system. The simulation was conducted using Multiphase Flow with Interphase eXchanges (MFiX) software. The influence of superficial velocity on the number of particles in a gasifier was analyzed using the 2-D discrete element model (DEM). In this numerical investigation, transient variation of pressure drop, axial and radial solid volume fraction, and particle velocity was evaluated, and the data were analyzed using the ParaView software. The simulation results of the gasifier indicated an increase in the bed pressure drop with the rise in inlet air velocity. The effective height of solid volume fraction also increased with the surge in superficial velocity. The solid velocity profile and streamlines were also investigated to understand its variation pertaining to the location within the fluidized bed.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"24 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFIX–DEM simulation of gas-solid flow dynamics in a dual fluidized bed system\",\"authors\":\"R. K. Banik, H. J. Das\",\"doi\":\"10.1088/1755-1315/1372/1/012100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To overcome the operational difficulties associated with bubbling and circulating fluidized bed gasifiers, a new gasification technology termed dual fluidized bed gasification (DFBG) has evolved. To strengthen the understanding of the gasification and combustion processes in the DFBG system, a thorough analysis of bed hydrodynamics is of paramount importance. Furthermore, the complexity of the hydrodynamics escalates while incorporating diverse fuels like biomass and coal, along with bed materials fluidized in a single reactor due to its nonlinearity and transience. As a result, the study of hydrodynamics in such a system is indispensable. The present study focuses on the discrete element model (DEM) simulation of the bed hydrodynamic behaviour within the gasifier of a DFBG system. The simulation was conducted using Multiphase Flow with Interphase eXchanges (MFiX) software. The influence of superficial velocity on the number of particles in a gasifier was analyzed using the 2-D discrete element model (DEM). In this numerical investigation, transient variation of pressure drop, axial and radial solid volume fraction, and particle velocity was evaluated, and the data were analyzed using the ParaView software. The simulation results of the gasifier indicated an increase in the bed pressure drop with the rise in inlet air velocity. The effective height of solid volume fraction also increased with the surge in superficial velocity. The solid velocity profile and streamlines were also investigated to understand its variation pertaining to the location within the fluidized bed.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了克服鼓泡流化床气化炉和循环流化床气化炉在操作上的困难,一种被称为双流化床气化(DFBG)的新型气化技术应运而生。为了加强对 DFBG 系统中气化和燃烧过程的了解,对床流体力学进行全面分析至关重要。此外,由于流体力学的非线性和瞬时性,在将生物质和煤炭等不同燃料以及床层材料流化在一个反应器中时,流体力学的复杂性也会增加。因此,对这种系统中的流体力学进行研究是必不可少的。本研究的重点是离散元素模型(DEM)模拟 DFBG 系统气化炉内的床层流体力学行为。模拟使用多相流与相间交换(MFiX)软件进行。利用二维离散元素模型(DEM)分析了表层速度对气化炉中颗粒数量的影响。在这项数值研究中,评估了压降、轴向和径向固体体积分数以及颗粒速度的瞬态变化,并使用 ParaView 软件对数据进行了分析。气化炉的模拟结果表明,床层压降随着进气速度的增加而增大。固体体积分数的有效高度也随着表面速度的增加而增加。还对固体速度曲线和流线进行了研究,以了解其与流化床内位置有关的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFIX–DEM simulation of gas-solid flow dynamics in a dual fluidized bed system
To overcome the operational difficulties associated with bubbling and circulating fluidized bed gasifiers, a new gasification technology termed dual fluidized bed gasification (DFBG) has evolved. To strengthen the understanding of the gasification and combustion processes in the DFBG system, a thorough analysis of bed hydrodynamics is of paramount importance. Furthermore, the complexity of the hydrodynamics escalates while incorporating diverse fuels like biomass and coal, along with bed materials fluidized in a single reactor due to its nonlinearity and transience. As a result, the study of hydrodynamics in such a system is indispensable. The present study focuses on the discrete element model (DEM) simulation of the bed hydrodynamic behaviour within the gasifier of a DFBG system. The simulation was conducted using Multiphase Flow with Interphase eXchanges (MFiX) software. The influence of superficial velocity on the number of particles in a gasifier was analyzed using the 2-D discrete element model (DEM). In this numerical investigation, transient variation of pressure drop, axial and radial solid volume fraction, and particle velocity was evaluated, and the data were analyzed using the ParaView software. The simulation results of the gasifier indicated an increase in the bed pressure drop with the rise in inlet air velocity. The effective height of solid volume fraction also increased with the surge in superficial velocity. The solid velocity profile and streamlines were also investigated to understand its variation pertaining to the location within the fluidized bed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信