S. Dameron, R. M. Leckie, David Harwood, Reed Scherer, Peter-Noel Webb
{"title":"返回罗斯冰架项目(RISP),J-9 号站点(1977-1979 年):从中新世和全新世底栖有孔虫看南极西部冰架历史的视角","authors":"S. Dameron, R. M. Leckie, David Harwood, Reed Scherer, Peter-Noel Webb","doi":"10.5194/jm-43-187-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In 1977–1978 and 1978–1979, the Ross Ice Shelf Project (RISP) recovered sediments from beneath the largest ice shelf in Antarctica at Site J-9 (∼82° S, 168° W), ∼450 km from open marine waters at the calving front of the Ross Ice Shelf and 890 km from the South Pole, one of the southernmost sites for marine sediment recovery in Antarctica. One important finding was the discovery of an active macrofauna, including crustaceans and fish, sustained below the ice shelf far from open waters. The sediment has a thin, unconsolidated upper unit (up to 20 cm thick) and a texturally similar but compacted lower unit (>1 m thick) containing reworked early, middle, and late Miocene diatom and calcareous benthic foraminiferal assemblages. A probable post-Last Glacial Maximum (LGM) disconformity separates the upper unit containing a dominantly agglutinated foraminiferal assemblage, from the lower unit consisting mostly of reworked Miocene calcareous benthic species, including Trifarina fluens, Elphidium magellanicum, Globocassidulina subglobosa, Gyroidina sp., and Nonionella spp. The presence of the polar planktic foraminiferal species Neogloboquadrina pachyderma and the endemic Antarcticella antarctica supports the late Miocene diatom age for the matrix of the lower unit. The microfossil assemblages indicate periods of ice sheet collapse and open-water conditions south of Site J-9 during warm intervals of the early, middle, and late Miocene, including the Miocene Climatic Optimum (∼17–14.7 Ma), demonstrating the dynamic nature of the West Antarctic Ice Sheet (WAIS) and Ross Ice Shelf during the Neogene. The foraminiferal assemblage of the upper unit is unique to the Ross Sea and suggests the influence of a sub-ice-shelf water mass proximal to the retreating post-LGM grounding zone. This unique assemblage is strongly dominated by the bathyal, cold-water agglutinated genus Cyclammina.\n","PeriodicalId":54786,"journal":{"name":"Journal of Micropalaeontology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera\",\"authors\":\"S. Dameron, R. M. Leckie, David Harwood, Reed Scherer, Peter-Noel Webb\",\"doi\":\"10.5194/jm-43-187-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In 1977–1978 and 1978–1979, the Ross Ice Shelf Project (RISP) recovered sediments from beneath the largest ice shelf in Antarctica at Site J-9 (∼82° S, 168° W), ∼450 km from open marine waters at the calving front of the Ross Ice Shelf and 890 km from the South Pole, one of the southernmost sites for marine sediment recovery in Antarctica. One important finding was the discovery of an active macrofauna, including crustaceans and fish, sustained below the ice shelf far from open waters. The sediment has a thin, unconsolidated upper unit (up to 20 cm thick) and a texturally similar but compacted lower unit (>1 m thick) containing reworked early, middle, and late Miocene diatom and calcareous benthic foraminiferal assemblages. A probable post-Last Glacial Maximum (LGM) disconformity separates the upper unit containing a dominantly agglutinated foraminiferal assemblage, from the lower unit consisting mostly of reworked Miocene calcareous benthic species, including Trifarina fluens, Elphidium magellanicum, Globocassidulina subglobosa, Gyroidina sp., and Nonionella spp. The presence of the polar planktic foraminiferal species Neogloboquadrina pachyderma and the endemic Antarcticella antarctica supports the late Miocene diatom age for the matrix of the lower unit. The microfossil assemblages indicate periods of ice sheet collapse and open-water conditions south of Site J-9 during warm intervals of the early, middle, and late Miocene, including the Miocene Climatic Optimum (∼17–14.7 Ma), demonstrating the dynamic nature of the West Antarctic Ice Sheet (WAIS) and Ross Ice Shelf during the Neogene. The foraminiferal assemblage of the upper unit is unique to the Ross Sea and suggests the influence of a sub-ice-shelf water mass proximal to the retreating post-LGM grounding zone. This unique assemblage is strongly dominated by the bathyal, cold-water agglutinated genus Cyclammina.\\n\",\"PeriodicalId\":54786,\"journal\":{\"name\":\"Journal of Micropalaeontology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micropalaeontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/jm-43-187-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micropalaeontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/jm-43-187-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
Abstract. In 1977–1978 and 1978–1979, the Ross Ice Shelf Project (RISP) recovered sediments from beneath the largest ice shelf in Antarctica at Site J-9 (∼82° S, 168° W), ∼450 km from open marine waters at the calving front of the Ross Ice Shelf and 890 km from the South Pole, one of the southernmost sites for marine sediment recovery in Antarctica. One important finding was the discovery of an active macrofauna, including crustaceans and fish, sustained below the ice shelf far from open waters. The sediment has a thin, unconsolidated upper unit (up to 20 cm thick) and a texturally similar but compacted lower unit (>1 m thick) containing reworked early, middle, and late Miocene diatom and calcareous benthic foraminiferal assemblages. A probable post-Last Glacial Maximum (LGM) disconformity separates the upper unit containing a dominantly agglutinated foraminiferal assemblage, from the lower unit consisting mostly of reworked Miocene calcareous benthic species, including Trifarina fluens, Elphidium magellanicum, Globocassidulina subglobosa, Gyroidina sp., and Nonionella spp. The presence of the polar planktic foraminiferal species Neogloboquadrina pachyderma and the endemic Antarcticella antarctica supports the late Miocene diatom age for the matrix of the lower unit. The microfossil assemblages indicate periods of ice sheet collapse and open-water conditions south of Site J-9 during warm intervals of the early, middle, and late Miocene, including the Miocene Climatic Optimum (∼17–14.7 Ma), demonstrating the dynamic nature of the West Antarctic Ice Sheet (WAIS) and Ross Ice Shelf during the Neogene. The foraminiferal assemblage of the upper unit is unique to the Ross Sea and suggests the influence of a sub-ice-shelf water mass proximal to the retreating post-LGM grounding zone. This unique assemblage is strongly dominated by the bathyal, cold-water agglutinated genus Cyclammina.
期刊介绍:
The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny.