Abdul Basit, H. Manzoor, Muhammad Akram, H. Gelani, Sajjad Hussain
{"title":"机器学习辅助的电力线组件异常检测:巴基斯坦案例研究","authors":"Abdul Basit, H. Manzoor, Muhammad Akram, H. Gelani, Sajjad Hussain","doi":"10.1049/tje2.12405","DOIUrl":null,"url":null,"abstract":"A continuous supply of electricity is necessary to maintain an acceptable standard of life, and the power distribution system's overhead line components play a crucial role in this matter. In Pakistan, identifying defective parts often necessitates human involvement. An unmanned aerial vehicle was used to gather a collection of 10,343 photos to automate this procedure. Using supervised and unsupervised machine learning methods, a number of automated anomaly detection systems were created. Support vector machine, random forest, VGG16, and ResNet50 were used as supervised machine learning models, and a convolutional auto‐encoder was used as the unsupervised machine learning model. VGG16 achieved the best accuracy of 99.00% while random forest achieved the worst accuracy of 72.49%. The convolutional auto‐encoder was successful in distinguishing between normal and abnormal components. The aforementioned machine learning models can be put on unmanned aerial vehicles to immediately identify defective parts.","PeriodicalId":510109,"journal":{"name":"The Journal of Engineering","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning‐assisted anomaly detection for power line components: A case study in Pakistan\",\"authors\":\"Abdul Basit, H. Manzoor, Muhammad Akram, H. Gelani, Sajjad Hussain\",\"doi\":\"10.1049/tje2.12405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous supply of electricity is necessary to maintain an acceptable standard of life, and the power distribution system's overhead line components play a crucial role in this matter. In Pakistan, identifying defective parts often necessitates human involvement. An unmanned aerial vehicle was used to gather a collection of 10,343 photos to automate this procedure. Using supervised and unsupervised machine learning methods, a number of automated anomaly detection systems were created. Support vector machine, random forest, VGG16, and ResNet50 were used as supervised machine learning models, and a convolutional auto‐encoder was used as the unsupervised machine learning model. VGG16 achieved the best accuracy of 99.00% while random forest achieved the worst accuracy of 72.49%. The convolutional auto‐encoder was successful in distinguishing between normal and abnormal components. The aforementioned machine learning models can be put on unmanned aerial vehicles to immediately identify defective parts.\",\"PeriodicalId\":510109,\"journal\":{\"name\":\"The Journal of Engineering\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/tje2.12405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/tje2.12405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning‐assisted anomaly detection for power line components: A case study in Pakistan
A continuous supply of electricity is necessary to maintain an acceptable standard of life, and the power distribution system's overhead line components play a crucial role in this matter. In Pakistan, identifying defective parts often necessitates human involvement. An unmanned aerial vehicle was used to gather a collection of 10,343 photos to automate this procedure. Using supervised and unsupervised machine learning methods, a number of automated anomaly detection systems were created. Support vector machine, random forest, VGG16, and ResNet50 were used as supervised machine learning models, and a convolutional auto‐encoder was used as the unsupervised machine learning model. VGG16 achieved the best accuracy of 99.00% while random forest achieved the worst accuracy of 72.49%. The convolutional auto‐encoder was successful in distinguishing between normal and abnormal components. The aforementioned machine learning models can be put on unmanned aerial vehicles to immediately identify defective parts.