从数据到设计

Robert Becker, Laura Steffny, Thomas Bleistein, Dirk Werth
{"title":"从数据到设计","authors":"Robert Becker, Laura Steffny, Thomas Bleistein, Dirk Werth","doi":"10.17560/atp.v66i6-7.2738","DOIUrl":null,"url":null,"abstract":"This paper explores the application of Large Language Models (LLMs) in the automotive and supplier industries, with a particular focus on the use of retrieval-augmented generation (RAG) systems to streamline information retrieval from technical documentation. The research, part of the CoLab4DigiTwin project, investigates how digital twins supported by smart services can enhance   interdisciplinary collaboration and reduce the reliance on manual data searches. We developed a pipeline utilizing a RAG architecture which uses a vector database for efficient  data management and fast access to relevant information, eliminating the need for expensive computational  resources. The performance of various open-source LLMs, which are finetuned on German, was evaluated, focusing on readability, clarity, and accuracy. The results show decent performance of the system without the need for model fine-tuning. Future research will aim to refine these  processes and extend the applicability of RAG systems, highlighting the potential of Large Language Models to transform industrial data interaction.","PeriodicalId":263160,"journal":{"name":"atp magazin","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Data to Design\",\"authors\":\"Robert Becker, Laura Steffny, Thomas Bleistein, Dirk Werth\",\"doi\":\"10.17560/atp.v66i6-7.2738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the application of Large Language Models (LLMs) in the automotive and supplier industries, with a particular focus on the use of retrieval-augmented generation (RAG) systems to streamline information retrieval from technical documentation. The research, part of the CoLab4DigiTwin project, investigates how digital twins supported by smart services can enhance   interdisciplinary collaboration and reduce the reliance on manual data searches. We developed a pipeline utilizing a RAG architecture which uses a vector database for efficient  data management and fast access to relevant information, eliminating the need for expensive computational  resources. The performance of various open-source LLMs, which are finetuned on German, was evaluated, focusing on readability, clarity, and accuracy. The results show decent performance of the system without the need for model fine-tuning. Future research will aim to refine these  processes and extend the applicability of RAG systems, highlighting the potential of Large Language Models to transform industrial data interaction.\",\"PeriodicalId\":263160,\"journal\":{\"name\":\"atp magazin\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"atp magazin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17560/atp.v66i6-7.2738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"atp magazin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17560/atp.v66i6-7.2738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了大语言模型(LLMs)在汽车和供应商行业中的应用,尤其侧重于使用检索增强生成(RAG)系统简化技术文档中的信息检索。这项研究是 CoLab4DigiTwin 项目的一部分,旨在探讨在智能服务支持下的数字孪生如何加强跨学科合作,减少对人工数据搜索的依赖。我们开发了一个利用 RAG 架构的管道,该架构使用矢量数据库进行高效数据管理和快速访问相关信息,从而消除了对昂贵计算资源的需求。我们评估了在德国进行微调的各种开源 LLM 的性能,重点关注可读性、清晰度和准确性。结果表明,无需对模型进行微调,该系统的性能也相当不错。未来的研究将致力于完善这些流程,扩大 RAG 系统的适用性,突出大型语言模型在改变工业数据交互方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Data to Design
This paper explores the application of Large Language Models (LLMs) in the automotive and supplier industries, with a particular focus on the use of retrieval-augmented generation (RAG) systems to streamline information retrieval from technical documentation. The research, part of the CoLab4DigiTwin project, investigates how digital twins supported by smart services can enhance   interdisciplinary collaboration and reduce the reliance on manual data searches. We developed a pipeline utilizing a RAG architecture which uses a vector database for efficient  data management and fast access to relevant information, eliminating the need for expensive computational  resources. The performance of various open-source LLMs, which are finetuned on German, was evaluated, focusing on readability, clarity, and accuracy. The results show decent performance of the system without the need for model fine-tuning. Future research will aim to refine these  processes and extend the applicability of RAG systems, highlighting the potential of Large Language Models to transform industrial data interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信