利用深度学习方法对骨关节炎进行分类和风险评估

Q4 Engineering
Aparna R. Patil , Satish Sampatrao Salunkhe
{"title":"利用深度学习方法对骨关节炎进行分类和风险评估","authors":"Aparna R. Patil ,&nbsp;Satish Sampatrao Salunkhe","doi":"10.1016/j.measen.2024.101279","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of knee osteoarthritis is solely based on contextual factors, with image processing algorithms playing a significant role in computer-aided diagnosis (CAD) systems. The inconsistent real-time pre-processing, on the other hand, has a significant impact on the diagnosing process. In this work, a Densely Connected Fully Convolutional Network (DFCN) for knee osteoarthritis classifier based on multiple learning (ML) strategies effectively classify knee osteoarthritis on the basis of risk estimation. Spatial osteoarthritis contextual vectors extracted by identifying the relationship between contextual variables using a machine learning approach. The hidden convolutional layers are used to compute edge interpretation, contextual cues, and input correction. The fused layer, which is simply a concentration of derived features, supports automatic learning of contextual features of osteoarthritis classification. The standard datasets from the Osteoarthritis Initiative (OAI) and the Multicentre Osteoarthritis Study (MOST) are used for experimental purposes to validate the proposed method. The results shows that the proposed DFCN is significantly improves the feature recognition for accurate classification around 94 % which is significantly higher than existing CNN results and flexibility to real-time implementation in the CAD system. It can also be used to automatically detect osteoarthritis types using a lightweight CNN architecture.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101279"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002551/pdfft?md5=5c75f3522afc98856aee926028af04a6&pid=1-s2.0-S2665917424002551-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Classification and risk estimation of osteoarthritis using deep learning methods\",\"authors\":\"Aparna R. Patil ,&nbsp;Satish Sampatrao Salunkhe\",\"doi\":\"10.1016/j.measen.2024.101279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classification of knee osteoarthritis is solely based on contextual factors, with image processing algorithms playing a significant role in computer-aided diagnosis (CAD) systems. The inconsistent real-time pre-processing, on the other hand, has a significant impact on the diagnosing process. In this work, a Densely Connected Fully Convolutional Network (DFCN) for knee osteoarthritis classifier based on multiple learning (ML) strategies effectively classify knee osteoarthritis on the basis of risk estimation. Spatial osteoarthritis contextual vectors extracted by identifying the relationship between contextual variables using a machine learning approach. The hidden convolutional layers are used to compute edge interpretation, contextual cues, and input correction. The fused layer, which is simply a concentration of derived features, supports automatic learning of contextual features of osteoarthritis classification. The standard datasets from the Osteoarthritis Initiative (OAI) and the Multicentre Osteoarthritis Study (MOST) are used for experimental purposes to validate the proposed method. The results shows that the proposed DFCN is significantly improves the feature recognition for accurate classification around 94 % which is significantly higher than existing CNN results and flexibility to real-time implementation in the CAD system. It can also be used to automatically detect osteoarthritis types using a lightweight CNN architecture.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"35 \",\"pages\":\"Article 101279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002551/pdfft?md5=5c75f3522afc98856aee926028af04a6&pid=1-s2.0-S2665917424002551-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

膝关节骨关节炎的分类完全基于上下文因素,图像处理算法在计算机辅助诊断(CAD)系统中发挥着重要作用。而不一致的实时预处理则会对诊断过程产生重大影响。在这项工作中,基于多重学习(ML)策略的膝骨关节炎分类器密集连接全卷积网络(DFCN)在风险估计的基础上有效地对膝骨关节炎进行了分类。通过使用机器学习方法识别上下文变量之间的关系,提取空间骨关节炎上下文向量。隐藏卷积层用于计算边缘解释、上下文线索和输入校正。融合层是衍生特征的集中体现,支持骨关节炎分类上下文特征的自动学习。实验中使用了骨关节炎倡议(OAI)和多中心骨关节炎研究(MOST)的标准数据集来验证所提出的方法。结果表明,所提出的 DFCN 显著提高了特征识别率,准确率约为 94%,明显高于现有 CNN 的结果,并能灵活地在 CAD 系统中实时实施。它还可用于使用轻量级 CNN 架构自动检测骨关节炎类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and risk estimation of osteoarthritis using deep learning methods

The classification of knee osteoarthritis is solely based on contextual factors, with image processing algorithms playing a significant role in computer-aided diagnosis (CAD) systems. The inconsistent real-time pre-processing, on the other hand, has a significant impact on the diagnosing process. In this work, a Densely Connected Fully Convolutional Network (DFCN) for knee osteoarthritis classifier based on multiple learning (ML) strategies effectively classify knee osteoarthritis on the basis of risk estimation. Spatial osteoarthritis contextual vectors extracted by identifying the relationship between contextual variables using a machine learning approach. The hidden convolutional layers are used to compute edge interpretation, contextual cues, and input correction. The fused layer, which is simply a concentration of derived features, supports automatic learning of contextual features of osteoarthritis classification. The standard datasets from the Osteoarthritis Initiative (OAI) and the Multicentre Osteoarthritis Study (MOST) are used for experimental purposes to validate the proposed method. The results shows that the proposed DFCN is significantly improves the feature recognition for accurate classification around 94 % which is significantly higher than existing CNN results and flexibility to real-time implementation in the CAD system. It can also be used to automatically detect osteoarthritis types using a lightweight CNN architecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信