氢键胶束组装定向共轭微孔聚合物,用于纳米球形碳框架,实现双离子电容器

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yang Qin , Shreeti Jha , Chengmin Hu , Ziyang Song , Ling Miao , Yumin Chen , Pingxuan Liu , Yaokang Lv , Lihua Gan , Mingxian Liu
{"title":"氢键胶束组装定向共轭微孔聚合物,用于纳米球形碳框架,实现双离子电容器","authors":"Yang Qin ,&nbsp;Shreeti Jha ,&nbsp;Chengmin Hu ,&nbsp;Ziyang Song ,&nbsp;Ling Miao ,&nbsp;Yumin Chen ,&nbsp;Pingxuan Liu ,&nbsp;Yaokang Lv ,&nbsp;Lihua Gan ,&nbsp;Mingxian Liu","doi":"10.1016/j.jcis.2024.07.052","DOIUrl":null,"url":null,"abstract":"<div><p>Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs’ oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs’ robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg<sup>−1</sup> and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g<sup>−1</sup>. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn<sup>2+</sup> and CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> as well as chemical redox of Zn<sup>2+</sup> with carbonyl/pyridine motifs forming O–Zn–N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"675 ","pages":"Pages 1091-1099"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors\",\"authors\":\"Yang Qin ,&nbsp;Shreeti Jha ,&nbsp;Chengmin Hu ,&nbsp;Ziyang Song ,&nbsp;Ling Miao ,&nbsp;Yumin Chen ,&nbsp;Pingxuan Liu ,&nbsp;Yaokang Lv ,&nbsp;Lihua Gan ,&nbsp;Mingxian Liu\",\"doi\":\"10.1016/j.jcis.2024.07.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs’ oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs’ robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg<sup>−1</sup> and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g<sup>−1</sup>. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn<sup>2+</sup> and CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> as well as chemical redox of Zn<sup>2+</sup> with carbonyl/pyridine motifs forming O–Zn–N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"675 \",\"pages\":\"Pages 1091-1099\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724015571\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724015571","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有超强稳定框架和高表面可及性的良好协调碳纳米结构对于锌离子混合电容器(ZIHC)至关重要。本文提出了一种氢键胶束自组装策略,用于形态可控的共轭微孔聚合物(CMPs)衍生碳的合成,以提高锌离子存储能力。在该策略中,通过分子间氢键的 F127 胶束组装可作为结构导向剂,引导 CMPs 的低聚物长成纳米球状组装体。由 CMPs(CNS-2)衍生出的纳米球状碳框架因其丰富的可调孔隙率和具有大量介孔互连通道的分层多孔结构而显示出最大的表面可及性,并且因 CMPs 的坚固框架而具有超强的稳定性,因此基于 CNS-2 的 ZIHC 表现出 163 Wh kg-1 的超高能量密度和超长寿命,在 20 A g-1 下循环 200,000 次后仍能保持 93% 的容量。电荷离子存储效率还在于 Zn2+ 和 CF3SO3- 的双离子交替吸收,以及 Zn2+ 与羰基/吡啶基形成 O-Zn-N 键的化学氧化还原。最大化的表面可及性和双离子存储机制确保了卓越的电化学性能。因此,氢键引导胶束自组装策略为设计用于 ZIHC 先进阴极的 CMPs 衍生碳纳米结构提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors

Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors

Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs’ oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs’ robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg−1 and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g−1. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn2+ and CF3SO3 as well as chemical redox of Zn2+ with carbonyl/pyridine motifs forming O–Zn–N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信