A. O. Oyatogun, E. Ajenifuja, A. Popoola, Olawale Popoola, F. Aramide, G. M. Oyatogun
{"title":"铜钛镍三元合金的火花等离子烧结:微结构、热性能和电性能","authors":"A. O. Oyatogun, E. Ajenifuja, A. Popoola, Olawale Popoola, F. Aramide, G. M. Oyatogun","doi":"10.21926/rpm.2403016","DOIUrl":null,"url":null,"abstract":"High strength and good conductivity are both critical parameters for copper-based alloys for electrical and other technological applications. This study is aimed to produce copper alloys and metal matrix composites (MMCs) with enhanced physical properties. Cu-Ti-Ni ternary alloys and MMCs samples were sintered at 600 to 700°C using spark plasma sintering (SPS), with a heating rate of 100°C/minutes, uniaxial pressure of 50 MPa, and a holding time of 10 minutes. Scanning electron microscopy (FE-SEM) was used to examine the microstructure, while the relative densities of the composites were obtained via the Archimedes Principle method. A four-point probe and differential thermal analyzer (DTA) obtained electrical resistivity and thermal properties. The results indicated that the sample density nominally increases with sintering temperature but decreases with aluminium nitride additions. The electrical conductivity increases with the sintering temperature and AlN nanoparticle content. Distinct phase changes were observed from the DTA, occurring with the addition of AlN.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"39 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark Plasma Sintering of Cu-Ti-Ni Ternary Alloy: Microstructural, Thermal and Electrical Properties\",\"authors\":\"A. O. Oyatogun, E. Ajenifuja, A. Popoola, Olawale Popoola, F. Aramide, G. M. Oyatogun\",\"doi\":\"10.21926/rpm.2403016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High strength and good conductivity are both critical parameters for copper-based alloys for electrical and other technological applications. This study is aimed to produce copper alloys and metal matrix composites (MMCs) with enhanced physical properties. Cu-Ti-Ni ternary alloys and MMCs samples were sintered at 600 to 700°C using spark plasma sintering (SPS), with a heating rate of 100°C/minutes, uniaxial pressure of 50 MPa, and a holding time of 10 minutes. Scanning electron microscopy (FE-SEM) was used to examine the microstructure, while the relative densities of the composites were obtained via the Archimedes Principle method. A four-point probe and differential thermal analyzer (DTA) obtained electrical resistivity and thermal properties. The results indicated that the sample density nominally increases with sintering temperature but decreases with aluminium nitride additions. The electrical conductivity increases with the sintering temperature and AlN nanoparticle content. Distinct phase changes were observed from the DTA, occurring with the addition of AlN.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2403016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2403016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spark Plasma Sintering of Cu-Ti-Ni Ternary Alloy: Microstructural, Thermal and Electrical Properties
High strength and good conductivity are both critical parameters for copper-based alloys for electrical and other technological applications. This study is aimed to produce copper alloys and metal matrix composites (MMCs) with enhanced physical properties. Cu-Ti-Ni ternary alloys and MMCs samples were sintered at 600 to 700°C using spark plasma sintering (SPS), with a heating rate of 100°C/minutes, uniaxial pressure of 50 MPa, and a holding time of 10 minutes. Scanning electron microscopy (FE-SEM) was used to examine the microstructure, while the relative densities of the composites were obtained via the Archimedes Principle method. A four-point probe and differential thermal analyzer (DTA) obtained electrical resistivity and thermal properties. The results indicated that the sample density nominally increases with sintering temperature but decreases with aluminium nitride additions. The electrical conductivity increases with the sintering temperature and AlN nanoparticle content. Distinct phase changes were observed from the DTA, occurring with the addition of AlN.