Aline Emmer Ferreira Furman , Alexandre de Fátima Cobre , Dile Pontarolo Stremel , Roberto Pontarolo
{"title":"利用傅立叶变换红外-近红外光谱和多变量数据分析快速诊断糖尿病和血脂异常的新方法:概念验证","authors":"Aline Emmer Ferreira Furman , Alexandre de Fátima Cobre , Dile Pontarolo Stremel , Roberto Pontarolo","doi":"10.1016/j.chemolab.2024.105179","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes and dyslipidemia are well-established risk factors for cardiovascular disease, which is the primary cause of death both in Brazil and globally. Fourier-transform mid-infrared spectroscopy (FTIR-MIR) generates spectral fingerprints of biomolecules, allowing for correlation with metabolic changes, while remaining a rapid, non-invasive, and non-destructive method. The study provided a proof of concept for the effectiveness of FTIR-MIR in screening diabetes, pre-diabetes, hypercholesterolemia, hypertriglyceridemia, and mixed dyslipidemia in blood serum. After acquiring mid-infrared spectra of 60 human serum samples, both unsupervised and supervised analysis models were developed. Principal component analysis (PCA) was used for pattern recognition and to determine how closely related the samples were based on their spectral profiles. The results obtained by the supervised models showed a clear discriminative ability to distinguish both diabetic and dyslipidemic samples from healthy subjects by multivariate analysis performed on FTIR-MIR spectra. High accuracy rates of more than 90 % were achieved for diabetes and dyslipidemia diagnosis with PLS-DA. Dyslipidemia type discrimination could be attributed mainly to the amide I region [1720-1600 cm<sup>−1</sup>, (ν(C<img>O)] and altered lipid concentration in the 3000-2800 cm<sup>−1</sup> region, whereas the discrimination of diabetes and prediabetes was primarily due to the altered conformational protein in the Amides I [1720-1600 cm<sup>−1</sup>, ν(C<img>O)] and Amide II [1570-1480 cm<sup>−1</sup>, δ(N<img>H) + ν(CH)] range.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105179"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new and fast method for diabetes and dyslipidemia diagnosis using FTIR-MIR, spectroscopy and multivariate data analysis: A proof of concept\",\"authors\":\"Aline Emmer Ferreira Furman , Alexandre de Fátima Cobre , Dile Pontarolo Stremel , Roberto Pontarolo\",\"doi\":\"10.1016/j.chemolab.2024.105179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes and dyslipidemia are well-established risk factors for cardiovascular disease, which is the primary cause of death both in Brazil and globally. Fourier-transform mid-infrared spectroscopy (FTIR-MIR) generates spectral fingerprints of biomolecules, allowing for correlation with metabolic changes, while remaining a rapid, non-invasive, and non-destructive method. The study provided a proof of concept for the effectiveness of FTIR-MIR in screening diabetes, pre-diabetes, hypercholesterolemia, hypertriglyceridemia, and mixed dyslipidemia in blood serum. After acquiring mid-infrared spectra of 60 human serum samples, both unsupervised and supervised analysis models were developed. Principal component analysis (PCA) was used for pattern recognition and to determine how closely related the samples were based on their spectral profiles. The results obtained by the supervised models showed a clear discriminative ability to distinguish both diabetic and dyslipidemic samples from healthy subjects by multivariate analysis performed on FTIR-MIR spectra. High accuracy rates of more than 90 % were achieved for diabetes and dyslipidemia diagnosis with PLS-DA. Dyslipidemia type discrimination could be attributed mainly to the amide I region [1720-1600 cm<sup>−1</sup>, (ν(C<img>O)] and altered lipid concentration in the 3000-2800 cm<sup>−1</sup> region, whereas the discrimination of diabetes and prediabetes was primarily due to the altered conformational protein in the Amides I [1720-1600 cm<sup>−1</sup>, ν(C<img>O)] and Amide II [1570-1480 cm<sup>−1</sup>, δ(N<img>H) + ν(CH)] range.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"252 \",\"pages\":\"Article 105179\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001199\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001199","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A new and fast method for diabetes and dyslipidemia diagnosis using FTIR-MIR, spectroscopy and multivariate data analysis: A proof of concept
Diabetes and dyslipidemia are well-established risk factors for cardiovascular disease, which is the primary cause of death both in Brazil and globally. Fourier-transform mid-infrared spectroscopy (FTIR-MIR) generates spectral fingerprints of biomolecules, allowing for correlation with metabolic changes, while remaining a rapid, non-invasive, and non-destructive method. The study provided a proof of concept for the effectiveness of FTIR-MIR in screening diabetes, pre-diabetes, hypercholesterolemia, hypertriglyceridemia, and mixed dyslipidemia in blood serum. After acquiring mid-infrared spectra of 60 human serum samples, both unsupervised and supervised analysis models were developed. Principal component analysis (PCA) was used for pattern recognition and to determine how closely related the samples were based on their spectral profiles. The results obtained by the supervised models showed a clear discriminative ability to distinguish both diabetic and dyslipidemic samples from healthy subjects by multivariate analysis performed on FTIR-MIR spectra. High accuracy rates of more than 90 % were achieved for diabetes and dyslipidemia diagnosis with PLS-DA. Dyslipidemia type discrimination could be attributed mainly to the amide I region [1720-1600 cm−1, (ν(CO)] and altered lipid concentration in the 3000-2800 cm−1 region, whereas the discrimination of diabetes and prediabetes was primarily due to the altered conformational protein in the Amides I [1720-1600 cm−1, ν(CO)] and Amide II [1570-1480 cm−1, δ(NH) + ν(CH)] range.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.