数据驱动的元数据成熟度评估模型

Mincong Tang, Jie Cao, Dalin Zhang, Ionut Pandelica
{"title":"数据驱动的元数据成熟度评估模型","authors":"Mincong Tang, Jie Cao, Dalin Zhang, Ionut Pandelica","doi":"10.15837/ijccc.2024.4.6498","DOIUrl":null,"url":null,"abstract":"The rapid development of the metaverse has sparked extensive discussion on how to estimate its development maturity using quantifiable indicators, which can offer an assessment framework for governing the metaverse. Currently, the measurable methods for assessing the maturity of the metaverse are still in the early stages. Data-driven approaches, which depend on the collection, analysis, and interpretation of large volumes of data to guide decisions and actions, are becoming more important. This paper proposes a data-driven approach to assess the maturity of the metaverse based on K-means-AdaBoost. This method automatically updates the indicator weights based on the knowledge acquired from the model, thereby significantly enhancing the accuracy of model predictions. Our approach assesses the maturity of metaverse systems through a thorough analysis of metaverse data and provides strategic guidance for their development.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Assessment Model for Metaverse Maturity\",\"authors\":\"Mincong Tang, Jie Cao, Dalin Zhang, Ionut Pandelica\",\"doi\":\"10.15837/ijccc.2024.4.6498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of the metaverse has sparked extensive discussion on how to estimate its development maturity using quantifiable indicators, which can offer an assessment framework for governing the metaverse. Currently, the measurable methods for assessing the maturity of the metaverse are still in the early stages. Data-driven approaches, which depend on the collection, analysis, and interpretation of large volumes of data to guide decisions and actions, are becoming more important. This paper proposes a data-driven approach to assess the maturity of the metaverse based on K-means-AdaBoost. This method automatically updates the indicator weights based on the knowledge acquired from the model, thereby significantly enhancing the accuracy of model predictions. Our approach assesses the maturity of metaverse systems through a thorough analysis of metaverse data and provides strategic guidance for their development.\",\"PeriodicalId\":179619,\"journal\":{\"name\":\"Int. J. Comput. Commun. Control\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Commun. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2024.4.6498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.6498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

元虚拟世界的快速发展引发了人们对如何利用可量化的指标来估计其发展成熟度的广泛讨论,这些指标可以为治理元虚拟世界提供一个评估框架。目前,评估元宇宙成熟度的可衡量方法仍处于早期阶段。数据驱动方法依赖于收集、分析和解释大量数据来指导决策和行动,这种方法正变得越来越重要。本文提出了一种基于 K-means-AdaBoost 的数据驱动方法来评估元宇宙的成熟度。该方法可根据从模型中获取的知识自动更新指标权重,从而显著提高模型预测的准确性。我们的方法通过全面分析元数据来评估元数据系统的成熟度,并为其发展提供战略指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Assessment Model for Metaverse Maturity
The rapid development of the metaverse has sparked extensive discussion on how to estimate its development maturity using quantifiable indicators, which can offer an assessment framework for governing the metaverse. Currently, the measurable methods for assessing the maturity of the metaverse are still in the early stages. Data-driven approaches, which depend on the collection, analysis, and interpretation of large volumes of data to guide decisions and actions, are becoming more important. This paper proposes a data-driven approach to assess the maturity of the metaverse based on K-means-AdaBoost. This method automatically updates the indicator weights based on the knowledge acquired from the model, thereby significantly enhancing the accuracy of model predictions. Our approach assesses the maturity of metaverse systems through a thorough analysis of metaverse data and provides strategic guidance for their development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信