Ping Guo , Xi Wu , Mingkang Yang, Yilun Xue, Jiakuan Zhou, Zhixi Huang, Wenman Wu, Jianbiao Wang
{"title":"在感染 SARS-CoV-2 的情况下,由新型 LYST 复合突变引起的晚发性青少年切迪克-希加希综合征患者的病情加速发展","authors":"Ping Guo , Xi Wu , Mingkang Yang, Yilun Xue, Jiakuan Zhou, Zhixi Huang, Wenman Wu, Jianbiao Wang","doi":"10.1016/j.bcmd.2024.102874","DOIUrl":null,"url":null,"abstract":"<div><p>Chediak-Higashi syndrome (CHS) is a rare autosomal recessive genetic disorder characterized by severe immunodeficiency, albinism and coagulation deficiency. Mostly diagnosed in early childhood, this devastating condition is associated with lysosomal abnormalities attributed to the absence or impaired function of lysosomal trafficking regulator caused by mutations in the <em>CHS1/LYST</em> gene. In current study, we report a case of late-onset CHS caused by two novel compound heterozygous <em>CHS1/LYST</em> mutations: c.8407C > T, leading to early termination of translation at residue Gln2803 (p. Gln2803Ter), and a small deletion c. 4020_4031del, resulting in an in-frame deletion of three amino acid residues (p. Asp1343_Val1346del). Both variants retain a large part of the CHS/LYST protein, particularly p. Asp1343_Val1346del, which preserves critical functional BEACH and WD40 domains in the C terminal, potentially maintaining residual activity and alleviating patient symptoms. The timeline of SARS-CoV-2 infection and rapid symptom progression suggests that the viral infection may have trigger the accelerated phase development leading to a poor prognosis.</p></div>","PeriodicalId":8972,"journal":{"name":"Blood Cells Molecules and Diseases","volume":"109 ","pages":"Article 102874"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated phase development in a late-onset adolescent Chediak-Higashi syndrome patient caused by compound novel LYST mutations in the setting of SARS-CoV-2 infection\",\"authors\":\"Ping Guo , Xi Wu , Mingkang Yang, Yilun Xue, Jiakuan Zhou, Zhixi Huang, Wenman Wu, Jianbiao Wang\",\"doi\":\"10.1016/j.bcmd.2024.102874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chediak-Higashi syndrome (CHS) is a rare autosomal recessive genetic disorder characterized by severe immunodeficiency, albinism and coagulation deficiency. Mostly diagnosed in early childhood, this devastating condition is associated with lysosomal abnormalities attributed to the absence or impaired function of lysosomal trafficking regulator caused by mutations in the <em>CHS1/LYST</em> gene. In current study, we report a case of late-onset CHS caused by two novel compound heterozygous <em>CHS1/LYST</em> mutations: c.8407C > T, leading to early termination of translation at residue Gln2803 (p. Gln2803Ter), and a small deletion c. 4020_4031del, resulting in an in-frame deletion of three amino acid residues (p. Asp1343_Val1346del). Both variants retain a large part of the CHS/LYST protein, particularly p. Asp1343_Val1346del, which preserves critical functional BEACH and WD40 domains in the C terminal, potentially maintaining residual activity and alleviating patient symptoms. The timeline of SARS-CoV-2 infection and rapid symptom progression suggests that the viral infection may have trigger the accelerated phase development leading to a poor prognosis.</p></div>\",\"PeriodicalId\":8972,\"journal\":{\"name\":\"Blood Cells Molecules and Diseases\",\"volume\":\"109 \",\"pages\":\"Article 102874\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Cells Molecules and Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1079979624000524\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cells Molecules and Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1079979624000524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Accelerated phase development in a late-onset adolescent Chediak-Higashi syndrome patient caused by compound novel LYST mutations in the setting of SARS-CoV-2 infection
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive genetic disorder characterized by severe immunodeficiency, albinism and coagulation deficiency. Mostly diagnosed in early childhood, this devastating condition is associated with lysosomal abnormalities attributed to the absence or impaired function of lysosomal trafficking regulator caused by mutations in the CHS1/LYST gene. In current study, we report a case of late-onset CHS caused by two novel compound heterozygous CHS1/LYST mutations: c.8407C > T, leading to early termination of translation at residue Gln2803 (p. Gln2803Ter), and a small deletion c. 4020_4031del, resulting in an in-frame deletion of three amino acid residues (p. Asp1343_Val1346del). Both variants retain a large part of the CHS/LYST protein, particularly p. Asp1343_Val1346del, which preserves critical functional BEACH and WD40 domains in the C terminal, potentially maintaining residual activity and alleviating patient symptoms. The timeline of SARS-CoV-2 infection and rapid symptom progression suggests that the viral infection may have trigger the accelerated phase development leading to a poor prognosis.
期刊介绍:
Blood Cells, Molecules & Diseases emphasizes not only blood cells, but also covers the molecular basis of hematologic disease and studies of the diseases themselves. This is an invaluable resource to all those interested in the study of hematology, cell biology, immunology, and human genetics.