利用矩阵编码遗传算法实现异构代理模型的合作目标分配

Shan Gao , Lei Zuo , Xiaofei Lu , Bo Tang
{"title":"利用矩阵编码遗传算法实现异构代理模型的合作目标分配","authors":"Shan Gao ,&nbsp;Lei Zuo ,&nbsp;Xiaofei Lu ,&nbsp;Bo Tang","doi":"10.1016/j.jiixd.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 2","pages":"Pages 154-172"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative target allocation for heterogeneous agent models using a matrix-encoding genetic algorithm\",\"authors\":\"Shan Gao ,&nbsp;Lei Zuo ,&nbsp;Xiaofei Lu ,&nbsp;Bo Tang\",\"doi\":\"10.1016/j.jiixd.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.</div></div>\",\"PeriodicalId\":100790,\"journal\":{\"name\":\"Journal of Information and Intelligence\",\"volume\":\"3 2\",\"pages\":\"Pages 154-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949715924000659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异构平台通过不同的操作模型协作执行任务,导致了包含不同代理模型的任务分配问题。本文针对异构智能体模型的协同目标分配问题,设计了任务-智能体匹配模型和多智能体路由模型。针对智能体模型的异质性和协同性导致的耦合分配问题,提出了一种矩阵编码遗传算法(MEGA)来规划可靠的分配方案。具体而言,采用整数矩阵编码表示MEGA中目标与智能体之间的优先级,并设计排序规则对优先级矩阵进行解码。基于所提出的编解码框架,我们使用离散和连续优化算子来更新目标-代理匹配对和任务执行顺序。此外,为了自适应平衡种群的多样性和集约化,提出了一种基于汉明距离的动态补充策略。该策略在优化过程的不同阶段加入不同多样性和适应度的个体。最后,仿真实验表明,在异构agent场景下,MEGA算法优于传统的目标分配算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative target allocation for heterogeneous agent models using a matrix-encoding genetic algorithm
Heterogeneous platforms collaborate to execute tasks through different operational models, resulting in the task allocation problem that incorporates different agent models. In this paper, we address the problem of cooperative target allocation for heterogeneous agent models, where we design the task-agent matching model and the multi-agent routing model. Since the heterogeneity and cooperativity of agent models lead to a coupled allocation problem, we propose a matrix-encoding genetic algorithm (MEGA) to plan reliable allocation schemes. Specifically, an integer matrix encoding is resorted to represent the priority between targets and agents in MEGA and a ranking rule is designed to decode the priority matrix. Based on the proposed encoding-decoding framework, we use the discrete and continuous optimization operators to update the target-agent match pairs and task execution orders. In addition, to adaptively balance the diversity and intensification of the population, a dynamical supplement strategy based on Hamming distance is proposed. This strategy adds individuals with different diversity and fitness at different stages of the optimization process. Finally, simulation experiments show that MEGA algorithm outperforms the conventional target allocation algorithms in the heterogeneous agent scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信