{"title":"气体击穿与等离子放电之间的滞后现象","authors":"Yusuke Yamashita, K. Hara, S. Sriraman","doi":"10.1063/5.0198151","DOIUrl":null,"url":null,"abstract":"In direct-current (DC) discharge, it is well known that hysteresis is observed between the Townsend (gas breakdown) and glow regimes. Forward and backward voltage sweep is performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model considering a ballast resistor. When increasing the applied voltage after reaching the breakdown voltage (Vb), transition from Townsend to glow discharges is observed. When decreasing the applied voltage from the glow regime, the discharge voltage (Vd) between the anode–cathode gap can be smaller than the breakdown voltage, resulting in a hysteresis, which is consistent with experimental observations. Next, the PIC-MCC model is used to investigate the self-sustaining voltage (Vs) in the presence of finite initial plasma densities between the anode and cathode gap. It is observed that the self-sustaining voltage coincides with the discharge voltage obtained from the backward voltage sweep. In addition, the self-sustaining voltage decreases with increased initial plasma density and saturates above a certain initial plasma density, which indicates a change in plasma resistivity. The decrease in self-sustaining voltage is associated with the electron heat loss at the anode for the low pd (rarefied) regime. In the high pd (collisional) regime, the ion energy loss toward the cathode due to the cathode fall and the inelastic collision loss of electrons in the bulk discharge balance out. Finally, it is demonstrated that the self-sustaining voltage collapses to a singular value, despite the presence of a initial plasma, for microgaps when field emission is dominant, which is also consistent with experimental observations.","PeriodicalId":510396,"journal":{"name":"Physics of Plasmas","volume":"30 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hysteresis between gas breakdown and plasma discharge\",\"authors\":\"Yusuke Yamashita, K. Hara, S. Sriraman\",\"doi\":\"10.1063/5.0198151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In direct-current (DC) discharge, it is well known that hysteresis is observed between the Townsend (gas breakdown) and glow regimes. Forward and backward voltage sweep is performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model considering a ballast resistor. When increasing the applied voltage after reaching the breakdown voltage (Vb), transition from Townsend to glow discharges is observed. When decreasing the applied voltage from the glow regime, the discharge voltage (Vd) between the anode–cathode gap can be smaller than the breakdown voltage, resulting in a hysteresis, which is consistent with experimental observations. Next, the PIC-MCC model is used to investigate the self-sustaining voltage (Vs) in the presence of finite initial plasma densities between the anode and cathode gap. It is observed that the self-sustaining voltage coincides with the discharge voltage obtained from the backward voltage sweep. In addition, the self-sustaining voltage decreases with increased initial plasma density and saturates above a certain initial plasma density, which indicates a change in plasma resistivity. The decrease in self-sustaining voltage is associated with the electron heat loss at the anode for the low pd (rarefied) regime. In the high pd (collisional) regime, the ion energy loss toward the cathode due to the cathode fall and the inelastic collision loss of electrons in the bulk discharge balance out. Finally, it is demonstrated that the self-sustaining voltage collapses to a singular value, despite the presence of a initial plasma, for microgaps when field emission is dominant, which is also consistent with experimental observations.\",\"PeriodicalId\":510396,\"journal\":{\"name\":\"Physics of Plasmas\",\"volume\":\"30 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Plasmas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0198151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0198151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hysteresis between gas breakdown and plasma discharge
In direct-current (DC) discharge, it is well known that hysteresis is observed between the Townsend (gas breakdown) and glow regimes. Forward and backward voltage sweep is performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model considering a ballast resistor. When increasing the applied voltage after reaching the breakdown voltage (Vb), transition from Townsend to glow discharges is observed. When decreasing the applied voltage from the glow regime, the discharge voltage (Vd) between the anode–cathode gap can be smaller than the breakdown voltage, resulting in a hysteresis, which is consistent with experimental observations. Next, the PIC-MCC model is used to investigate the self-sustaining voltage (Vs) in the presence of finite initial plasma densities between the anode and cathode gap. It is observed that the self-sustaining voltage coincides with the discharge voltage obtained from the backward voltage sweep. In addition, the self-sustaining voltage decreases with increased initial plasma density and saturates above a certain initial plasma density, which indicates a change in plasma resistivity. The decrease in self-sustaining voltage is associated with the electron heat loss at the anode for the low pd (rarefied) regime. In the high pd (collisional) regime, the ion energy loss toward the cathode due to the cathode fall and the inelastic collision loss of electrons in the bulk discharge balance out. Finally, it is demonstrated that the self-sustaining voltage collapses to a singular value, despite the presence of a initial plasma, for microgaps when field emission is dominant, which is also consistent with experimental observations.