{"title":"通过联合卡尔曼滤波器改善使用超宽带传感器进行室内定位时的非视距情况","authors":"Mehmet Nasuhcan Türker, Taner Arsan","doi":"10.11591/ijeecs.v35.i1.pp247-254","DOIUrl":null,"url":null,"abstract":"Ultra-wideband (UWB) technology is renowned for its exceptional performance in fast data transmission and precise positioning. However, it faces sensitivity challenges when the tagged object is not in direct line of sight, resulting in position inaccuracies. Applying the federated Kalman filter (FKF), this research focuses on mitigating position deviation induced by non-line-of-sight (NLOS) scenarios in UWB technology. The utilization of the FKF in NLOS scenarios has demonstrated a noteworthy reduction in position deviation. This study uses the FKF to analyze measurements taken under line-of-sight (LOS) and NLOS conditions within indoor settings. The outcomes of this study provide a promising foundation for future research endeavors in the field of UWB technology, emphasizing the potential for improved performance and accuracy in challenging operational environments.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving non-line-of-sight situations in indoor positioning with ultra-wideband sensors via federated Kalman filter\",\"authors\":\"Mehmet Nasuhcan Türker, Taner Arsan\",\"doi\":\"10.11591/ijeecs.v35.i1.pp247-254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-wideband (UWB) technology is renowned for its exceptional performance in fast data transmission and precise positioning. However, it faces sensitivity challenges when the tagged object is not in direct line of sight, resulting in position inaccuracies. Applying the federated Kalman filter (FKF), this research focuses on mitigating position deviation induced by non-line-of-sight (NLOS) scenarios in UWB technology. The utilization of the FKF in NLOS scenarios has demonstrated a noteworthy reduction in position deviation. This study uses the FKF to analyze measurements taken under line-of-sight (LOS) and NLOS conditions within indoor settings. The outcomes of this study provide a promising foundation for future research endeavors in the field of UWB technology, emphasizing the potential for improved performance and accuracy in challenging operational environments.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v35.i1.pp247-254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp247-254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Improving non-line-of-sight situations in indoor positioning with ultra-wideband sensors via federated Kalman filter
Ultra-wideband (UWB) technology is renowned for its exceptional performance in fast data transmission and precise positioning. However, it faces sensitivity challenges when the tagged object is not in direct line of sight, resulting in position inaccuracies. Applying the federated Kalman filter (FKF), this research focuses on mitigating position deviation induced by non-line-of-sight (NLOS) scenarios in UWB technology. The utilization of the FKF in NLOS scenarios has demonstrated a noteworthy reduction in position deviation. This study uses the FKF to analyze measurements taken under line-of-sight (LOS) and NLOS conditions within indoor settings. The outcomes of this study provide a promising foundation for future research endeavors in the field of UWB technology, emphasizing the potential for improved performance and accuracy in challenging operational environments.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]