{"title":"车辆-基础设施合作系统中的高能效自适应任务调度","authors":"Beipo Su, Liang Dai, Yongfeng Ju","doi":"10.1049/itr2.12516","DOIUrl":null,"url":null,"abstract":"<p>In the cooperative vehicle-infrastructure system (CVIS), due to its computation limitation, vehicles are difficult to handle computing-intensive delay-sensitive tasks, so offload tasks to roadside unit (RSU) become popular. Due to the complexity of vehicles’ tasks and tasks generated by different vehicles have different delay constraints, minimize energy consumption of RSUs under task dependence and delay constraints is challenging. This paper defines the task priority queuing criterion for the task priority division problem, proposes a task scheduling strategy for energy-packet queue length tradeoff (TSET) in CVIS under RSUs distributed task scheduling problem and establishes the vehicle speed state model, task model, data queue model, task computing model and energy consumption model. After Lyapunov optimization theory transformed the optimization model, a knapsack problem was described. The simulation results verify that TSET reduces the average energy consumption of roadside units and ensures the stability of the data queue under task dependence and deadline conditions.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12516","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient adaptive dependent task scheduling in cooperative vehicle-infrastructure system\",\"authors\":\"Beipo Su, Liang Dai, Yongfeng Ju\",\"doi\":\"10.1049/itr2.12516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the cooperative vehicle-infrastructure system (CVIS), due to its computation limitation, vehicles are difficult to handle computing-intensive delay-sensitive tasks, so offload tasks to roadside unit (RSU) become popular. Due to the complexity of vehicles’ tasks and tasks generated by different vehicles have different delay constraints, minimize energy consumption of RSUs under task dependence and delay constraints is challenging. This paper defines the task priority queuing criterion for the task priority division problem, proposes a task scheduling strategy for energy-packet queue length tradeoff (TSET) in CVIS under RSUs distributed task scheduling problem and establishes the vehicle speed state model, task model, data queue model, task computing model and energy consumption model. After Lyapunov optimization theory transformed the optimization model, a knapsack problem was described. The simulation results verify that TSET reduces the average energy consumption of roadside units and ensures the stability of the data queue under task dependence and deadline conditions.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12516\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12516\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12516","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Energy-efficient adaptive dependent task scheduling in cooperative vehicle-infrastructure system
In the cooperative vehicle-infrastructure system (CVIS), due to its computation limitation, vehicles are difficult to handle computing-intensive delay-sensitive tasks, so offload tasks to roadside unit (RSU) become popular. Due to the complexity of vehicles’ tasks and tasks generated by different vehicles have different delay constraints, minimize energy consumption of RSUs under task dependence and delay constraints is challenging. This paper defines the task priority queuing criterion for the task priority division problem, proposes a task scheduling strategy for energy-packet queue length tradeoff (TSET) in CVIS under RSUs distributed task scheduling problem and establishes the vehicle speed state model, task model, data queue model, task computing model and energy consumption model. After Lyapunov optimization theory transformed the optimization model, a knapsack problem was described. The simulation results verify that TSET reduces the average energy consumption of roadside units and ensures the stability of the data queue under task dependence and deadline conditions.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf